Home
Class 12
MATHS
The value of the integral overset(e )und...

The value of the integral `overset(e )underset(1//e)int |logx|dx`, is

A

`1-1//e`

B

`3(l-1//e)`

C

`e^(-1)-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1/e}^{e} |\log x| \, dx \), we will follow these steps: ### Step 1: Analyze the function \( |\log x| \) The function \( \log x \) is negative when \( x < 1 \) and positive when \( x > 1 \). Since our limits of integration are from \( \frac{1}{e} \) to \( e \), we note that: - At \( x = \frac{1}{e} \), \( \log \frac{1}{e} = -1 \) (negative) - At \( x = 1 \), \( \log 1 = 0 \) (zero) - At \( x = e \), \( \log e = 1 \) (positive) Thus, we can break the integral into two parts: 1. From \( \frac{1}{e} \) to \( 1 \), where \( |\log x| = -\log x \) 2. From \( 1 \) to \( e \), where \( |\log x| = \log x \) ### Step 2: Set up the integral We can express the integral as: \[ \int_{1/e}^{e} |\log x| \, dx = \int_{1/e}^{1} -\log x \, dx + \int_{1}^{e} \log x \, dx \] ### Step 3: Calculate the first integral \( \int_{1/e}^{1} -\log x \, dx \) Using integration by parts, let: - \( u = \log x \) → \( du = \frac{1}{x} \, dx \) - \( dv = dx \) → \( v = x \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int -\log x \, dx = -\left( x \log x - \int x \cdot \frac{1}{x} \, dx \right) = -\left( x \log x - x \right) = -x \log x + x \] Now, we evaluate from \( \frac{1}{e} \) to \( 1 \): \[ \left[-x \log x + x\right]_{1/e}^{1} = \left[-1 \cdot \log 1 + 1\right] - \left[-\frac{1}{e} \cdot \log \frac{1}{e} + \frac{1}{e}\right] \] \[ = [0 + 1] - \left[-\frac{1}{e} \cdot (-1) + \frac{1}{e}\right] = 1 - \left[\frac{1}{e} + \frac{1}{e}\right] = 1 - \frac{2}{e} \] ### Step 4: Calculate the second integral \( \int_{1}^{e} \log x \, dx \) Using the same integration by parts as before: \[ \left[x \log x - x\right]_{1}^{e} = \left[e \cdot \log e - e\right] - \left[1 \cdot \log 1 - 1\right] \] \[ = [e \cdot 1 - e] - [0 - 1] = [e - e] - [-1] = 0 + 1 = 1 \] ### Step 5: Combine the results Now, we combine both parts: \[ \int_{1/e}^{e} |\log x| \, dx = \left(1 - \frac{2}{e}\right) + 1 = 2 - \frac{2}{e} \] ### Final Answer Thus, the value of the integral is: \[ \int_{1/e}^{e} |\log x| \, dx = 2 - \frac{2}{e} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in the integral

The value of the integral overset(2)underset(0)int (log(x^(2)+2))/((x+2)^(2)) , dx is

The value of the integral overset(1)underset(1//3)int((x-x^(3))^(1//3))/(x^(4))dx is

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral overset(a)underset(0)int (1)/(1+e^(f(x)))dx is equal to

The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)dx (k is an even integer) is equal to

The value of the integral underset(e^(-1))overset(e^(2))int |(log_(e)x)/(x)|dx is

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the definite integral overset(3pi//4)underset(0)int(1+x)sin x+(1-x) cos x)dx is

The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^(2))dx , is

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. The value of int(0)^(100)[tan^(-1)x]dx is, (where [.] denotes greatest...

    Text Solution

    |

  2. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  3. The value of the integral overset(e )underset(1//e)int |logx|dx, is

    Text Solution

    |

  4. The value of int(-1)^(10) sgn (x-[x])dx is equal to (where, [.] denote...

    Text Solution

    |

  5. If f(x)=ax^(3)+bx^(2)+cx have relative extrema x = 1 and at x = 5. If...

    Text Solution

    |

  6. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  7. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  8. Evaluate int(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x...

    Text Solution

    |

  9. Evaluate : int0^(pi/4)(sinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  10. If I(n)=overset(pi//4)underset(0)int tan ^(n) x dx, lim(n to oo) n(I(n...

    Text Solution

    |

  11. int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

    Text Solution

    |

  12. If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest i...

    Text Solution

    |

  13. if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx

    Text Solution

    |

  14. if I = int0 ^1.7 [x^2]dx, then I equal is

    Text Solution

    |

  15. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  16. underset(0)overset(1)intlnsin(pi/2x) dx

    Text Solution

    |

  17. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  18. The value of overset(16pi//3)underset(0)int |sinx|dx is

    Text Solution

    |

  19. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  20. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |