Home
Class 12
MATHS
If f(x)=ax^(3)+bx^(2)+cx have relative e...

If `f(x)=ax^(3)+bx^(2)+cx` have relative extrema x = 1 and at x = 5. If `int_(-1)^(1)f(x)dx=6` then :

A

`a=-1`

B

`b=9`

C

`c=15`

D

`a=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning laid out in the video transcript. ### Step 1: Finding the Derivative Given the function: \[ f(x) = ax^3 + bx^2 + cx \] We first find the derivative: \[ f'(x) = \frac{d}{dx}(ax^3) + \frac{d}{dx}(bx^2) + \frac{d}{dx}(cx) \] Using the power rule: \[ f'(x) = 3ax^2 + 2bx + c \] ### Step 2: Setting Derivative to Zero at Extrema Since the function has relative extrema at \( x = 1 \) and \( x = 5 \), we set the derivative equal to zero at these points: 1. For \( x = 1 \): \[ f'(1) = 3a(1^2) + 2b(1) + c = 0 \] This simplifies to: \[ 3a + 2b + c = 0 \] (Equation 1) 2. For \( x = 5 \): \[ f'(5) = 3a(5^2) + 2b(5) + c = 0 \] This simplifies to: \[ 75a + 10b + c = 0 \] (Equation 2) ### Step 3: Subtracting the Equations Now we subtract Equation 1 from Equation 2 to eliminate \( c \): \[ (75a + 10b + c) - (3a + 2b + c) = 0 \] This simplifies to: \[ (75a - 3a) + (10b - 2b) = 0 \implies 72a + 8b = 0 \] Dividing by 8: \[ 9a + b = 0 \implies b = -9a \quad (Equation 3) \] ### Step 4: Using the Integral Condition We are given the condition: \[ \int_{-1}^{1} f(x) \, dx = 6 \] Calculating the integral: \[ \int_{-1}^{1} (ax^3 + bx^2 + cx) \, dx = \int_{-1}^{1} ax^3 \, dx + \int_{-1}^{1} bx^2 \, dx + \int_{-1}^{1} cx \, dx \] The integrals evaluate as follows: 1. \(\int_{-1}^{1} ax^3 \, dx = 0\) (since \(x^3\) is an odd function) 2. \(\int_{-1}^{1} bx^2 \, dx = b \cdot \left[ \frac{x^3}{3} \right]_{-1}^{1} = b \cdot \left( \frac{1}{3} - \frac{-1}{3} \right) = \frac{2b}{3}\) 3. \(\int_{-1}^{1} cx \, dx = 0\) (since \(x\) is an odd function) Thus, we have: \[ \frac{2b}{3} = 6 \] Multiplying both sides by 3: \[ 2b = 18 \implies b = 9 \] ### Step 5: Finding \(a\) and \(c\) Substituting \(b = 9\) into Equation 3: \[ 9a + 9 = 0 \implies 9a = -9 \implies a = -1 \] Now substituting \(a = -1\) and \(b = 9\) into Equation 1: \[ 3(-1) + 2(9) + c = 0 \implies -3 + 18 + c = 0 \implies c = -15 \] ### Final Values Thus, we have: - \(a = -1\) - \(b = 9\) - \(c = -15\) ### Summary The values of \(a\), \(b\), and \(c\) are: - \(a = -1\) - \(b = 9\) - \(c = -15\)
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If f (x)=a ln |x| +bx^(2) +x has extremas at x=1and x=3 then:

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

"If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then evaluate int_(1)^(3) f(x) dx.

A function f(x) satisfie f(x)=f((c)/(x)) for some real number c( gt 1) and all positive number 'x'. If int_(1)^(sqrtc)(f(x))/(x)dx=3 , then int_(1)^(c)(f(x))/(x)dx is

If f(x) =ae^(2x)+be^(x)+cx , satisfies the conditions f(0)=-1, f'(log 2)=31, int_(0)^(log4) (f(x)-cx)dx=(39)/(2) , then

If f(x) = a + bx + cx^2 where a, b, c in R then int_o ^1 f(x)dx

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 for all x in R Then (a,b)=

f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx , then f(1) =

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. The value of the integral overset(e )underset(1//e)int |logx|dx, is

    Text Solution

    |

  2. The value of int(-1)^(10) sgn (x-[x])dx is equal to (where, [.] denote...

    Text Solution

    |

  3. If f(x)=ax^(3)+bx^(2)+cx have relative extrema x = 1 and at x = 5. If...

    Text Solution

    |

  4. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  5. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  6. Evaluate int(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x...

    Text Solution

    |

  7. Evaluate : int0^(pi/4)(sinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  8. If I(n)=overset(pi//4)underset(0)int tan ^(n) x dx, lim(n to oo) n(I(n...

    Text Solution

    |

  9. int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

    Text Solution

    |

  10. If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest i...

    Text Solution

    |

  11. if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx

    Text Solution

    |

  12. if I = int0 ^1.7 [x^2]dx, then I equal is

    Text Solution

    |

  13. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  14. underset(0)overset(1)intlnsin(pi/2x) dx

    Text Solution

    |

  15. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  16. The value of overset(16pi//3)underset(0)int |sinx|dx is

    Text Solution

    |

  17. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  18. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  19. Evaluate: inta^b e^x dx using limit of sum

    Text Solution

    |

  20. Evaluate: inta^bsinx dx using limit of sum

    Text Solution

    |