Home
Class 12
MATHS
int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx...

`int_(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx`, where [.] denotes the greatest integer function, is equal to:

A

`10 pi` - sec1

B

`10pi +` secl

C

`10pi - secl + cotl`

D

secl + cotl

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{10\pi} \left[ \sec^{-1} x + \cot^{-1} x \right] dx \), where \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Understanding the Functions First, we need to understand the behavior of the functions \( \sec^{-1} x \) and \( \cot^{-1} x \). - The function \( \sec^{-1} x \) is defined for \( x \geq 1 \) and is increasing. At \( x = 1 \), \( \sec^{-1}(1) = 0 \). - The function \( \cot^{-1} x \) is defined for \( x > 0 \) and is decreasing. At \( x = 1 \), \( \cot^{-1}(1) = \frac{\pi}{4} \). ### Step 2: Finding the Values at the Bounds Next, we calculate the values of \( \sec^{-1} x + \cot^{-1} x \) at the bounds of the integral. At \( x = 1 \): \[ \sec^{-1}(1) + \cot^{-1}(1) = 0 + \frac{\pi}{4} = \frac{\pi}{4} \] As \( x \) increases, \( \sec^{-1} x \) increases and \( \cot^{-1} x \) decreases. ### Step 3: Behavior of the Sum For \( x \) in the interval \( [1, 10\pi] \): - As \( x \) approaches \( 10\pi \), \( \sec^{-1} x \) approaches a value greater than \( \frac{\pi}{4} \) and \( \cot^{-1} x \) approaches \( 0 \). - Therefore, \( \sec^{-1} x + \cot^{-1} x \) will vary between \( \frac{\pi}{4} \) and a value greater than \( \frac{\pi}{4} \). ### Step 4: Applying the Greatest Integer Function Now, we need to find the greatest integer function value of \( \sec^{-1} x + \cot^{-1} x \): - At \( x = 1 \), \( \sec^{-1}(1) + \cot^{-1}(1) = \frac{\pi}{4} \approx 0.785 \). - As \( x \) increases, \( \sec^{-1} x + \cot^{-1} x \) will remain less than \( 1 \) for \( x < 2 \) (since \( \sec^{-1} x \) starts from 0 and \( \cot^{-1} x \) starts from \( \frac{\pi}{4} \)). - Therefore, for \( 1 \leq x < 2 \), the greatest integer function \( \left[ \sec^{-1} x + \cot^{-1} x \right] = 0 \). ### Step 5: Evaluating the Integral Since \( \left[ \sec^{-1} x + \cot^{-1} x \right] = 0 \) for \( x \) in the interval \( [1, 10\pi] \), the integral simplifies to: \[ \int_{1}^{10\pi} 0 \, dx = 0 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

int_1^(10pi)([sec^(- 1)x]+[cot^(- 1)x]dx where [.] denotes the greatest integer function is (A) 10pi-sec1 (B) 10pi+sec1 (C) 10pi-sec1+cot1 (D) sec1+cot1

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

int_(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is equal to

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. If f(x)=ax^(3)+bx^(2)+cx have relative extrema x = 1 and at x = 5. If...

    Text Solution

    |

  2. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  3. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  4. Evaluate int(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x...

    Text Solution

    |

  5. Evaluate : int0^(pi/4)(sinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  6. If I(n)=overset(pi//4)underset(0)int tan ^(n) x dx, lim(n to oo) n(I(n...

    Text Solution

    |

  7. int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

    Text Solution

    |

  8. If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest i...

    Text Solution

    |

  9. if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx

    Text Solution

    |

  10. if I = int0 ^1.7 [x^2]dx, then I equal is

    Text Solution

    |

  11. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  12. underset(0)overset(1)intlnsin(pi/2x) dx

    Text Solution

    |

  13. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  14. The value of overset(16pi//3)underset(0)int |sinx|dx is

    Text Solution

    |

  15. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  16. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  17. Evaluate: inta^b e^x dx using limit of sum

    Text Solution

    |

  18. Evaluate: inta^bsinx dx using limit of sum

    Text Solution

    |

  19. lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4...

    Text Solution

    |

  20. Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)loge(1+r/n)

    Text Solution

    |