Home
Class 12
MATHS
If I(n)=overset(pi//4)underset(0)int tan...

If `I_(n)=overset(pi//4)underset(0)int tan ^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1))` equals

A

`(1)/(2)`

B

1

C

`oo`

D

zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{n \to \infty} n(I_{n+1} + I_{n-1}) \] where \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx. \] ### Step 1: Express \( I_n \) in terms of \( I_{n-2} \) Using the identity for \( \tan^n x \): \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \tan^2 x \, dx \] We can rewrite \( \tan^2 x \) as \( \sec^2 x - 1 \): \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot (\sec^2 x - 1) \, dx \] This expands to: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \sec^2 x \, dx - \int_0^{\frac{\pi}{4}} \tan^{n-2} x \, dx \] The first integral can be rewritten as: \[ I_n = I_{n-2} + I_{n-2} \] Thus, we have: \[ I_n + I_{n-2} = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \sec^2 x \, dx \] ### Step 2: Change of Variables Now, we use the substitution \( t = \tan x \), hence \( dt = \sec^2 x \, dx \). The limits change as follows: - When \( x = 0 \), \( t = 0 \) - When \( x = \frac{\pi}{4} \), \( t = 1 \) Thus, we have: \[ I_n + I_{n-2} = \int_0^1 t^{n-2} \, dt \] ### Step 3: Evaluate the Integral The integral evaluates to: \[ \int_0^1 t^{n-2} \, dt = \left[ \frac{t^{n-1}}{n-1} \right]_0^1 = \frac{1}{n-1} \] So we have: \[ I_n + I_{n-2} = \frac{1}{n-1} \] ### Step 4: Relate \( I_{n+1} \) and \( I_{n-1} \) By a similar argument, we can write: \[ I_{n+1} + I_{n-1} = \frac{1}{n} \] ### Step 5: Combine the Results Now we have: \[ I_n + I_{n-2} = \frac{1}{n-1} \] \[ I_{n+1} + I_{n-1} = \frac{1}{n} \] ### Step 6: Find the Limit Now, we need to find: \[ \lim_{n \to \infty} n(I_{n+1} + I_{n-1}) = \lim_{n \to \infty} n \cdot \frac{1}{n} = 1 \] ### Conclusion Thus, the final answer is: \[ \lim_{n \to \infty} n(I_{n+1} + I_{n-1}) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo)(n!)/((n+1)!-n!)

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

lim_(n to oo) n/(2^n)int_0^2x^n \ dx equals

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

(lim)_(n to oo)n/(2^n)int_0^2x^n dx equals___

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

If I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I_(n)+I_(n-2)=1/(n+1) (b) I_(n)+I_(n-2)=1/(n-1) (c) I_(2)+I_(4),I_(6),……. are in H.P. (d) 1/(2(n+1))ltI_(n)lt1/(2(n-1))

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Evaluate int(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x...

    Text Solution

    |

  2. Evaluate : int0^(pi/4)(sinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  3. If I(n)=overset(pi//4)underset(0)int tan ^(n) x dx, lim(n to oo) n(I(n...

    Text Solution

    |

  4. int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

    Text Solution

    |

  5. If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest i...

    Text Solution

    |

  6. if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx

    Text Solution

    |

  7. if I = int0 ^1.7 [x^2]dx, then I equal is

    Text Solution

    |

  8. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  9. underset(0)overset(1)intlnsin(pi/2x) dx

    Text Solution

    |

  10. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  11. The value of overset(16pi//3)underset(0)int |sinx|dx is

    Text Solution

    |

  12. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  13. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  14. Evaluate: inta^b e^x dx using limit of sum

    Text Solution

    |

  15. Evaluate: inta^bsinx dx using limit of sum

    Text Solution

    |

  16. lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4...

    Text Solution

    |

  17. Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)loge(1+r/n)

    Text Solution

    |

  18. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  19. Evaluate : lim(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2...

    Text Solution

    |

  20. lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

    Text Solution

    |