Home
Class 12
MATHS
If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx...

If `I=int_-1^1 ([x^2]+log((2+x)/(2-x)))dx` where denotes the greatest integer `leq x`, then `I` equals

A

`-2`

B

`-1`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{1} \left( [x^2] + \log\left(\frac{2+x}{2-x}\right) \right) dx \), where \([x^2]\) denotes the greatest integer function, we will break it down into two parts: \( I_1 \) and \( I_2 \). ### Step 1: Evaluate \( I_1 = \int_{-1}^{1} [x^2] \, dx \) 1. **Understanding the greatest integer function**: - For \( x \in [-1, 1] \), \( x^2 \) varies from \( 0 \) to \( 1 \). - Therefore, \( [x^2] = 0 \) for \( x \in [-1, 1) \) and \( [x^2] = 0 \) for \( x = 1 \) as well. 2. **Calculating \( I_1 \)**: \[ I_1 = \int_{-1}^{1} [x^2] \, dx = \int_{-1}^{1} 0 \, dx = 0 \] ### Step 2: Evaluate \( I_2 = \int_{-1}^{1} \log\left(\frac{2+x}{2-x}\right) \, dx \) 1. **Using the property of definite integrals**: - We will check the symmetry of the function \( f(x) = \log\left(\frac{2+x}{2-x}\right) \). - Calculate \( f(-x) \): \[ f(-x) = \log\left(\frac{2-x}{2+x}\right) = -\log\left(\frac{2+x}{2-x}\right) = -f(x) \] - Since \( f(-x) = -f(x) \), the function is odd. 2. **Calculating \( I_2 \)**: \[ I_2 = \int_{-1}^{1} f(x) \, dx = 0 \quad \text{(since the integral of an odd function over a symmetric interval is zero)} \] ### Step 3: Combine results to find \( I \) 1. **Combine \( I_1 \) and \( I_2 \)**: \[ I = I_1 + I_2 = 0 + 0 = 0 \] ### Final Answer: \[ I = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

The value of the integral int_(-2)^2 sin^2x/(-2[x/pi]+1/2)dx (where [x] denotes the greatest integer less then or equal to x) is

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

The value of int_(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int_(-1)^(1) cos^(-1)[x^(2)-(1)/(2)]dx , where [.] denotes the greatest integer function , is

The value of l = int_0^3([x]+[x+1/3]+[x+2/3])dx where [.] denotes the greatest integer function is equal to

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. If I(n)=overset(pi//4)underset(0)int tan ^(n) x dx, lim(n to oo) n(I(n...

    Text Solution

    |

  2. int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

    Text Solution

    |

  3. If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest i...

    Text Solution

    |

  4. if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx

    Text Solution

    |

  5. if I = int0 ^1.7 [x^2]dx, then I equal is

    Text Solution

    |

  6. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  7. underset(0)overset(1)intlnsin(pi/2x) dx

    Text Solution

    |

  8. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  9. The value of overset(16pi//3)underset(0)int |sinx|dx is

    Text Solution

    |

  10. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  11. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  12. Evaluate: inta^b e^x dx using limit of sum

    Text Solution

    |

  13. Evaluate: inta^bsinx dx using limit of sum

    Text Solution

    |

  14. lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4...

    Text Solution

    |

  15. Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)loge(1+r/n)

    Text Solution

    |

  16. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  17. Evaluate : lim(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2...

    Text Solution

    |

  18. lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

    Text Solution

    |

  19. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  20. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |