Home
Class 12
MATHS
if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx...

if `I = int_(-3) ^2 (|x+1|+|x+2|+|x-1|)dx`

A

`(47)/(2)`

B

`(45)/(2)`

C

`(37)/(2)`

D

`(39)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-3}^{2} (|x+1| + |x+2| + |x-1|) \, dx \), we first need to analyze the absolute value expressions to determine the points where they change. ### Step 1: Identify the critical points The expressions \( |x+1| \), \( |x+2| \), and \( |x-1| \) change at the points: - \( x = -2 \) (for \( |x+2| \)) - \( x = -1 \) (for \( |x+1| \)) - \( x = 1 \) (for \( |x-1| \)) These points divide the interval \([-3, 2]\) into segments: 1. \( [-3, -2] \) 2. \( [-2, -1] \) 3. \( [-1, 1] \) 4. \( [1, 2] \) ### Step 2: Evaluate the integral on each segment #### Segment 1: \( x \in [-3, -2] \) For \( x < -2 \): - \( |x+1| = -(x+1) = -x - 1 \) - \( |x+2| = -(x+2) = -x - 2 \) - \( |x-1| = -(x-1) = -x + 1 \) Thus, \[ |x+1| + |x+2| + |x-1| = (-x - 1) + (-x - 2) + (-x + 1) = -3x - 2 \] The integral becomes: \[ I_1 = \int_{-3}^{-2} (-3x - 2) \, dx \] #### Segment 2: \( x \in [-2, -1] \) For \( -2 \leq x < -1 \): - \( |x+1| = -(x+1) = -x - 1 \) - \( |x+2| = x + 2 \) - \( |x-1| = -(x-1) = -x + 1 \) Thus, \[ |x+1| + |x+2| + |x-1| = (-x - 1) + (x + 2) + (-x + 1) = -x + 2 \] The integral becomes: \[ I_2 = \int_{-2}^{-1} (-x + 2) \, dx \] #### Segment 3: \( x \in [-1, 1] \) For \( -1 \leq x < 1 \): - \( |x+1| = x + 1 \) - \( |x+2| = x + 2 \) - \( |x-1| = -(x-1) = -x + 1 \) Thus, \[ |x+1| + |x+2| + |x-1| = (x + 1) + (x + 2) + (-x + 1) = x + 4 \] The integral becomes: \[ I_3 = \int_{-1}^{1} (x + 4) \, dx \] #### Segment 4: \( x \in [1, 2] \) For \( x \geq 1 \): - \( |x+1| = x + 1 \) - \( |x+2| = x + 2 \) - \( |x-1| = x - 1 \) Thus, \[ |x+1| + |x+2| + |x-1| = (x + 1) + (x + 2) + (x - 1) = 3x + 2 \] The integral becomes: \[ I_4 = \int_{1}^{2} (3x + 2) \, dx \] ### Step 3: Calculate each integral 1. **Calculate \( I_1 \)**: \[ I_1 = \int_{-3}^{-2} (-3x - 2) \, dx = \left[-\frac{3}{2}x^2 - 2x\right]_{-3}^{-2} \] \[ = \left[-\frac{3}{2}(-2)^2 - 2(-2)\right] - \left[-\frac{3}{2}(-3)^2 - 2(-3)\right] \] \[ = \left[-6 + 4\right] - \left[-\frac{27}{2} + 6\right] = -2 + \frac{27}{2} - 6 = \frac{27 - 4}{2} = \frac{23}{2} \] 2. **Calculate \( I_2 \)**: \[ I_2 = \int_{-2}^{-1} (-x + 2) \, dx = \left[-\frac{1}{2}x^2 + 2x\right]_{-2}^{-1} \] \[ = \left[-\frac{1}{2}(-1)^2 + 2(-1)\right] - \left[-\frac{1}{2}(-2)^2 + 2(-2)\right] \] \[ = \left[-\frac{1}{2} - 2\right] - \left[-2 + 4\right] = -\frac{5}{2} + 2 = -\frac{1}{2} \] 3. **Calculate \( I_3 \)**: \[ I_3 = \int_{-1}^{1} (x + 4) \, dx = \left[\frac{1}{2}x^2 + 4x\right]_{-1}^{1} \] \[ = \left[\frac{1}{2}(1)^2 + 4(1)\right] - \left[\frac{1}{2}(-1)^2 + 4(-1)\right] \] \[ = \left[\frac{1}{2} + 4\right] - \left[\frac{1}{2} - 4\right] = \frac{9}{2} + \frac{7}{2} = \frac{16}{2} = 8 \] 4. **Calculate \( I_4 \)**: \[ I_4 = \int_{1}^{2} (3x + 2) \, dx = \left[\frac{3}{2}x^2 + 2x\right]_{1}^{2} \] \[ = \left[\frac{3}{2}(2)^2 + 2(2)\right] - \left[\frac{3}{2}(1)^2 + 2(1)\right] \] \[ = \left[6 + 4\right] - \left[\frac{3}{2} + 2\right] = 10 - \frac{7}{2} = \frac{20 - 7}{2} = \frac{13}{2} \] ### Step 4: Combine the results Now, we sum all the integrals: \[ I = I_1 + I_2 + I_3 + I_4 = \frac{23}{2} - \frac{1}{2} + 8 + \frac{13}{2} \] \[ = \frac{23 - 1 + 16 + 13}{2} = \frac{51}{2} \] ### Final Answer Thus, the value of the integral \( I \) is: \[ \boxed{\frac{51}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2) (x^3+1) dx

int_(0)^(3)(|x|+|x-1|+|x-2|)dx equals

Evaluate: int_0^1|5x-3|dx (ii) int_0^pi|cosx|dx (iii) int_(-5)^5|x-2|dx (iv) int_(-1)^1e^(|x|)dx (v) int_0^2|x^2+2x-3|dx (v) int_1^4(|x-1|+|x-2|+|x-3|)dx (vi) int_(-1)^2|x^3-x|dx

If I_(1)=int_(1-x)^(x) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(x) sin{x(1-x)}dx , then

Let f be a positive function. If I_1 = int_(1-k)^k x f[x(1-x)]\ dx and I_2 = int_(1-k)^k f[x(1-x)]\ dx, where 2k-1 gt 0. Then I_1/I_2 is

Evaluate the following integrals: (1-35) int_(-2)^2(3x^3+2|x|+1)/(x^2+|x|+1)dx

Let I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx and I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx , then

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

int_(-1)^2 (x/4+1/2)dx-int_-1^2x^2/4 dx

int_(-1)^2 (x/4+1/2)dx-int_-1^2x^2/4 dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

    Text Solution

    |

  2. If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest i...

    Text Solution

    |

  3. if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx

    Text Solution

    |

  4. if I = int0 ^1.7 [x^2]dx, then I equal is

    Text Solution

    |

  5. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  6. underset(0)overset(1)intlnsin(pi/2x) dx

    Text Solution

    |

  7. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  8. The value of overset(16pi//3)underset(0)int |sinx|dx is

    Text Solution

    |

  9. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  10. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  11. Evaluate: inta^b e^x dx using limit of sum

    Text Solution

    |

  12. Evaluate: inta^bsinx dx using limit of sum

    Text Solution

    |

  13. lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4...

    Text Solution

    |

  14. Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)loge(1+r/n)

    Text Solution

    |

  15. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  16. Evaluate : lim(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2...

    Text Solution

    |

  17. lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

    Text Solution

    |

  18. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  19. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  20. lim(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

    Text Solution

    |