Home
Class 12
MATHS
if I = int0 ^1.7 [x^2]dx, then I equal i...

if `I = int_0 ^1.7 [x^2]dx`, then `I` equal is

A

`2.4 + sqrt(2)`

B

`2.4 - sqrt(2)`

C

`2.4 + (1)/(sqrt(2))`

D

`2.4-(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{1.7} \text{gif}(x^2) \, dx \), where \(\text{gif}(x)\) is the greatest integer function, we will break the integral into segments based on the behavior of the function \(\text{gif}(x^2)\). ### Step 1: Identify the intervals for \(x\) The function \(x^2\) will take different ranges as \(x\) varies from 0 to 1.7. We need to find the critical points where the value of \(\text{gif}(x^2)\) changes. 1. For \(0 \leq x < 1\): - \(x^2\) ranges from \(0\) to \(1\). - Thus, \(\text{gif}(x^2) = 0\). 2. For \(1 \leq x < \sqrt{2}\): - \(x^2\) ranges from \(1\) to \(2\). - Thus, \(\text{gif}(x^2) = 1\). 3. For \(\sqrt{2} \leq x \leq 1.7\): - \(x^2\) ranges from \(2\) to \(2.89\). - Thus, \(\text{gif}(x^2) = 2\). ### Step 2: Break the integral into segments We can break the integral \(I\) into three parts based on the intervals identified: \[ I = \int_0^1 \text{gif}(x^2) \, dx + \int_1^{\sqrt{2}} \text{gif}(x^2) \, dx + \int_{\sqrt{2}}^{1.7} \text{gif}(x^2) \, dx \] ### Step 3: Evaluate each integral 1. **First Integral**: \[ \int_0^1 \text{gif}(x^2) \, dx = \int_0^1 0 \, dx = 0 \] 2. **Second Integral**: \[ \int_1^{\sqrt{2}} \text{gif}(x^2) \, dx = \int_1^{\sqrt{2}} 1 \, dx = \left[ x \right]_1^{\sqrt{2}} = \sqrt{2} - 1 \] 3. **Third Integral**: \[ \int_{\sqrt{2}}^{1.7} \text{gif}(x^2) \, dx = \int_{\sqrt{2}}^{1.7} 2 \, dx = 2 \left[ x \right]_{\sqrt{2}}^{1.7} = 2(1.7 - \sqrt{2}) \] ### Step 4: Combine the results Now, we can combine the results of the three integrals: \[ I = 0 + (\sqrt{2} - 1) + 2(1.7 - \sqrt{2}) \] Simplifying this expression: \[ I = \sqrt{2} - 1 + 3.4 - 2\sqrt{2} = 3.4 - \sqrt{2} - 1 = 2.4 - \sqrt{2} \] ### Final Result Thus, the value of the integral \(I\) is: \[ \boxed{2.4 - \sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If I=int_(-2)^(2) dx , then I equals

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

If I=int sqrt((5-x)/(2+x)) dx, then equal

If I=int_0^(1) (1)/(1+x^(pi//2))dx , then\

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to

If I(m) = int_0^pi ln(1-2m cos x + m^2)dx , then I(1)=

If I=int_(0)^(1) (dx)/(1+x^(4)) , then

If I=int_-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest integer leq x , then I equals

If I=int (dx)/(secx + cosec x), then equals

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest i...

    Text Solution

    |

  2. if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx

    Text Solution

    |

  3. if I = int0 ^1.7 [x^2]dx, then I equal is

    Text Solution

    |

  4. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  5. underset(0)overset(1)intlnsin(pi/2x) dx

    Text Solution

    |

  6. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  7. The value of overset(16pi//3)underset(0)int |sinx|dx is

    Text Solution

    |

  8. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  9. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  10. Evaluate: inta^b e^x dx using limit of sum

    Text Solution

    |

  11. Evaluate: inta^bsinx dx using limit of sum

    Text Solution

    |

  12. lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4...

    Text Solution

    |

  13. Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)loge(1+r/n)

    Text Solution

    |

  14. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  15. Evaluate : lim(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2...

    Text Solution

    |

  16. lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

    Text Solution

    |

  17. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  18. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  19. lim(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

    Text Solution

    |

  20. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |