Home
Class 12
MATHS
I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^...

`I_1=int_0^(pi/2)ln(sinx)dx ,I_2=int_(-pi/4)^(pi/4)ln(sinx+cosx)dxdot` Then (a)`I_1=2I_2` (b) `I_2=2I_1` `I_1=4I_2` (d) `I_2=4I_1`

A

`I_(1)=2I_(2)`

B

`I_(2)=2I_(1)`

C

`I_(1)=4I_(2)`

D

`I_(2)=4I_(1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

I_(1)=int_(0)^((pi)/2)Ln (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)Ln(sinx+cosx)dx . Then

If I_1=int_0^(pi/2)f(sinx)sinxdx and I_2=int_0^(pi/2)f(cosx)cosxdx then I_1/I_2

If I_1=int_0^(3pi) (cos^2x) dx and I_2 =int_0^pi (cos^2x) dx then (a) I_1=I_2 (2) I_1=2 I_2 (3) I_1=5I_2 (4) I_1=3I_2

Find I=int_0^pi ln(1+cosx)dx

IfI_1=int_0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I_2=int_0^(pi/2)(sin^2x)/(1+sin^2x)dx I_3=int_0^(pi/2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx ,t h e n I_1=I_2> I_3 (b) I_3> I_1=I_2 I_1=I_2=I_3 (d) none of these

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

If I_1=int_0^pixf(sin^3x+cos^2x)dxand I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx , then relate I_1 and I_2

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

I=int_0^(2pi) e^(sin^2x+sinx+1)dx then

I_1=int_0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I_2=int_0^(2pi)cos^6xdx ,I_3=int_(pi/2)^(pi/2)sin^3xdx ,I_4=int_0^1 1n(1/x-1)dxdotT h e n I_2=I_3=I_4=0,I_1!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_4=I_3=0,I_2!=0

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx

    Text Solution

    |

  2. if I = int0 ^1.7 [x^2]dx, then I equal is

    Text Solution

    |

  3. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  4. underset(0)overset(1)intlnsin(pi/2x) dx

    Text Solution

    |

  5. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  6. The value of overset(16pi//3)underset(0)int |sinx|dx is

    Text Solution

    |

  7. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  8. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  9. Evaluate: inta^b e^x dx using limit of sum

    Text Solution

    |

  10. Evaluate: inta^bsinx dx using limit of sum

    Text Solution

    |

  11. lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4...

    Text Solution

    |

  12. Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)loge(1+r/n)

    Text Solution

    |

  13. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  14. Evaluate : lim(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2...

    Text Solution

    |

  15. lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

    Text Solution

    |

  16. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  17. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  18. lim(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

    Text Solution

    |

  19. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  20. lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

    Text Solution

    |