Home
Class 12
MATHS
If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=...

If `int_(1/2)^2 1/x cosec^(101)(x-1/x)dx=k` then the value of k is :

A

1

B

`1//2`

C

0

D

`1//101`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( k = \int_{\frac{1}{2}}^{2} \frac{1}{x} \csc^{101}\left(x - \frac{1}{x}\right) \, dx \), we will use a substitution and properties of integrals. ### Step 1: Substitution Let \( x = \frac{1}{t} \). Then, we differentiate to find \( dx \): \[ dx = -\frac{1}{t^2} dt \] ### Step 2: Change the limits of integration When \( x = \frac{1}{2} \), \( t = 2 \). When \( x = 2 \), \( t = \frac{1}{2} \). Thus, the limits of integration change from \( \frac{1}{2} \) to \( 2 \) into \( 2 \) to \( \frac{1}{2} \). ### Step 3: Substitute in the integral Now substituting \( x = \frac{1}{t} \) into the integral: \[ k = \int_{2}^{\frac{1}{2}} \frac{1}{\frac{1}{t}} \csc^{101}\left(\frac{1}{t} - t\right) \left(-\frac{1}{t^2}\right) dt \] This simplifies to: \[ k = \int_{2}^{\frac{1}{2}} -\frac{t}{1} \csc^{101}\left(\frac{1}{t} - t\right) dt \] Reversing the limits gives: \[ k = \int_{\frac{1}{2}}^{2} \frac{1}{t} \csc^{101}\left(t - \frac{1}{t}\right) dt \] ### Step 4: Recognizing symmetry Notice that \( \csc(-x) = -\csc(x) \). Therefore: \[ \csc^{101}\left(t - \frac{1}{t}\right) = -\csc^{101}\left(-\left(t - \frac{1}{t}\right)\right) \] This implies that the integrand is odd with respect to the transformation \( x \rightarrow \frac{1}{x} \). ### Step 5: Adding the two integrals Now we have two expressions for \( k \): 1. \( k = \int_{\frac{1}{2}}^{2} \frac{1}{x} \csc^{101}\left(x - \frac{1}{x}\right) dx \) 2. \( k = \int_{\frac{1}{2}}^{2} \frac{1}{t} \csc^{101}\left(t - \frac{1}{t}\right) dt \) Adding these two equations: \[ 2k = \int_{\frac{1}{2}}^{2} \left( \frac{1}{x} \csc^{101}\left(x - \frac{1}{x}\right) + \frac{1}{x} \csc^{101}\left(-\left(x - \frac{1}{x}\right)\right) \right) dx \] Since the integrand sums to zero: \[ 2k = 0 \implies k = 0 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(40) (dx)/( 2x +1) = log k , then the value of k is

If int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx , then the value of k, is

Let d/(dx) (F(x))= e^(sinx)/x, x>0 . If int_1^4 2e^sin(x^2)/x dx = F(k)-F(1) , then possible value of k is:

If I_(1)= int_(1)^(sin theta) (x)/(1+x^(2)) dx and I_(2) int_(1)^("cosec" theta) (1)/(x(x^(2+1)))dx then the value of |{:(I_(1),I_(1)^(2),I_(2)),(e^(I_(1)+I_(2)),I_(2)^(2),-1),(1,I_(1)^(2)+I_(2)^(2),-1):}| , is

If int_0^1(3x^2+2x+k)dx=0, find the value of k

If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C , then the value of k is

If f is continuous on [0,1] such that f(x)+f(x+1/2)=1 and int_0^1f(x)dx=k , then value of 2k is 0 (2) 1 (3) 2 (4) 3

If int_0^1(e^(-x)dx)/(1+e^x)=(log)_e(1+e)+k , then find the value of k.

If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C , then the value of k is

int_(0)^(pi//2) " 1/cosec "(x-(pi)/(3)) dx=?

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  2. underset(0)overset(1)intlnsin(pi/2x) dx

    Text Solution

    |

  3. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  4. The value of overset(16pi//3)underset(0)int |sinx|dx is

    Text Solution

    |

  5. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  6. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  7. Evaluate: inta^b e^x dx using limit of sum

    Text Solution

    |

  8. Evaluate: inta^bsinx dx using limit of sum

    Text Solution

    |

  9. lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4...

    Text Solution

    |

  10. Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)loge(1+r/n)

    Text Solution

    |

  11. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  12. Evaluate : lim(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2...

    Text Solution

    |

  13. lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

    Text Solution

    |

  14. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  15. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  16. lim(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

    Text Solution

    |

  17. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  18. lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

    Text Solution

    |

  19. IfSn=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)(n ra...

    Text Solution

    |

  20. The value of lim(n to oo)sum(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

    Text Solution

    |