Home
Class 12
MATHS
The value of overset(16pi//3)underset(0)...

The value of `overset(16pi//3)underset(0)int |sinx|dx` is

A

`17//2`

B

`19//2`

C

`21//2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the integral \( \int_0^{\frac{16\pi}{3}} |\sin x| \, dx \), we will break it down into intervals where the sine function is positive and negative. ### Step 1: Identify the intervals The sine function, \( \sin x \), is periodic with a period of \( 2\pi \). The integral from \( 0 \) to \( \frac{16\pi}{3} \) can be divided into segments where \( \sin x \) changes its sign: - From \( 0 \) to \( \pi \): \( \sin x \) is positive. - From \( \pi \) to \( 2\pi \): \( \sin x \) is negative. - From \( 2\pi \) to \( 3\pi \): \( \sin x \) is positive. - From \( 3\pi \) to \( 4\pi \): \( \sin x \) is negative. - From \( 4\pi \) to \( 5\pi \): \( \sin x \) is positive. - From \( 5\pi \) to \( \frac{16\pi}{3} \): \( \sin x \) is negative. ### Step 2: Rewrite the integral Using the properties of absolute value, we can rewrite the integral as: \[ \int_0^{\frac{16\pi}{3}} |\sin x| \, dx = \int_0^{\pi} \sin x \, dx - \int_{\pi}^{2\pi} \sin x \, dx + \int_{2\pi}^{3\pi} \sin x \, dx - \int_{3\pi}^{4\pi} \sin x \, dx + \int_{4\pi}^{5\pi} \sin x \, dx - \int_{5\pi}^{\frac{16\pi}{3}} \sin x \, dx \] ### Step 3: Calculate each integral 1. **From \( 0 \) to \( \pi \)**: \[ \int_0^{\pi} \sin x \, dx = [-\cos x]_0^{\pi} = -\cos(\pi) - (-\cos(0)) = 1 + 1 = 2 \] 2. **From \( \pi \) to \( 2\pi \)**: \[ \int_{\pi}^{2\pi} \sin x \, dx = [-\cos x]_{\pi}^{2\pi} = -\cos(2\pi) - (-\cos(\pi)) = 1 + 1 = 2 \] 3. **From \( 2\pi \) to \( 3\pi \)**: \[ \int_{2\pi}^{3\pi} \sin x \, dx = [-\cos x]_{2\pi}^{3\pi} = -\cos(3\pi) - (-\cos(2\pi)) = -(-1) - (-1) = 2 \] 4. **From \( 3\pi \) to \( 4\pi \)**: \[ \int_{3\pi}^{4\pi} \sin x \, dx = [-\cos x]_{3\pi}^{4\pi} = -\cos(4\pi) - (-\cos(3\pi)) = 1 + 1 = 2 \] 5. **From \( 4\pi \) to \( 5\pi \)**: \[ \int_{4\pi}^{5\pi} \sin x \, dx = [-\cos x]_{4\pi}^{5\pi} = -\cos(5\pi) - (-\cos(4\pi)) = -(-1) - (-1) = 2 \] 6. **From \( 5\pi \) to \( \frac{16\pi}{3} \)**: \[ \int_{5\pi}^{\frac{16\pi}{3}} \sin x \, dx = [-\cos x]_{5\pi}^{\frac{16\pi}{3}} = -\cos\left(\frac{16\pi}{3}\right) - (-\cos(5\pi)) \] To find \( \cos\left(\frac{16\pi}{3}\right) \): \[ \frac{16\pi}{3} = 5\pi + \frac{\pi}{3} \quad \text{(since } 5\pi = \frac{15\pi}{3}\text{)} \] Thus, \( \cos\left(\frac{16\pi}{3}\right) = \cos\left(5\pi + \frac{\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2} \). Therefore, \[ -\cos\left(\frac{16\pi}{3}\right) - (-\cos(5\pi)) = -\left(-\frac{1}{2}\right) - (-(-1)) = \frac{1}{2} + 1 = \frac{3}{2} \] ### Step 4: Combine all parts Now, we combine all the parts: \[ \int_0^{\frac{16\pi}{3}} |\sin x| \, dx = 2 + 2 + 2 + 2 + 2 + \frac{3}{2} = 10 + \frac{3}{2} = \frac{20}{2} + \frac{3}{2} = \frac{23}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_0^{\frac{16\pi}{3}} |\sin x| \, dx = \frac{23}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equal to

If overset(4)underset(-1)int f(x)=4 and overset(4)underset(2)int (3-f(x))dx=7 , then the value of overset(-1)underset(2)int f(x)dx , is

The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)dx (k is an even integer) is equal to

The value of overset([x])underset(0)int (x-[x])dx ,where [x] is the greatest integer of x is equal to

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

The value of underset(0)overset(pi//2)int logtan xdx , is

overset(pi)underset(0)int (1)/(1+3^(cosx)) dx is equal to

The value of the definite integral overset(3pi//4)underset(0)int(1+x)sin x+(1-x) cos x)dx is

The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in the integral

The value of the integral overset(1)underset(1//3)int((x-x^(3))^(1//3))/(x^(4))dx is

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. underset(0)overset(1)intlnsin(pi/2x) dx

    Text Solution

    |

  2. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  3. The value of overset(16pi//3)underset(0)int |sinx|dx is

    Text Solution

    |

  4. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  5. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  6. Evaluate: inta^b e^x dx using limit of sum

    Text Solution

    |

  7. Evaluate: inta^bsinx dx using limit of sum

    Text Solution

    |

  8. lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4...

    Text Solution

    |

  9. Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)loge(1+r/n)

    Text Solution

    |

  10. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  11. Evaluate : lim(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2...

    Text Solution

    |

  12. lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

    Text Solution

    |

  13. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  14. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  15. lim(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

    Text Solution

    |

  16. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  17. lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

    Text Solution

    |

  18. IfSn=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)(n ra...

    Text Solution

    |

  19. The value of lim(n to oo)sum(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

    Text Solution

    |

  20. The value of lim(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(...

    Text Solution

    |