Home
Class 12
MATHS
The value of int(0)^(1000)e^(x-[x])dx, i...

The value of `int_(0)^(1000)e^(x-[x])dx`, is ([.] denotes the greatest integer function) :

A

1000 e

B

1000 (e - 1)

C

1001 (e - 1)

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1000} e^{x - [x]} \, dx \), where \([x]\) denotes the greatest integer function, we can break down the integral into segments based on the behavior of the greatest integer function. ### Step 1: Understand the Greatest Integer Function The greatest integer function \([x]\) gives the largest integer less than or equal to \(x\). For example: - If \(0 \leq x < 1\), then \([x] = 0\). - If \(1 \leq x < 2\), then \([x] = 1\). - If \(2 \leq x < 3\), then \([x] = 2\). - This pattern continues up to \(1000\). ### Step 2: Break the Integral into Intervals We can express the integral as a sum of integrals over each interval where \([x]\) is constant: \[ I = \sum_{n=0}^{999} \int_{n}^{n+1} e^{x - n} \, dx \] This is because \([x] = n\) for \(x \in [n, n+1)\). ### Step 3: Evaluate Each Integral Now, we evaluate each integral: \[ \int_{n}^{n+1} e^{x - n} \, dx = \int_{n}^{n+1} e^{x} e^{-n} \, dx = e^{-n} \int_{n}^{n+1} e^{x} \, dx \] The integral of \(e^{x}\) is: \[ \int e^{x} \, dx = e^{x} + C \] Thus, \[ \int_{n}^{n+1} e^{x} \, dx = e^{n+1} - e^{n} = e^{n}(e - 1) \] So, \[ \int_{n}^{n+1} e^{x - n} \, dx = e^{-n} \cdot e^{n}(e - 1) = (e - 1) \] ### Step 4: Sum the Integrals Now, we sum over all intervals from \(n = 0\) to \(n = 999\): \[ I = \sum_{n=0}^{999} (e - 1) = 1000(e - 1) \] ### Step 5: Final Result Thus, the value of the integral is: \[ I = 1000(e - 1) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of int_0^100 [tan^-1 x]dx is, (where [*] denotes greatest integer function)

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |

  2. The value of overset(16pi//3)underset(0)int |sinx|dx is

    Text Solution

    |

  3. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  4. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  5. Evaluate: inta^b e^x dx using limit of sum

    Text Solution

    |

  6. Evaluate: inta^bsinx dx using limit of sum

    Text Solution

    |

  7. lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4...

    Text Solution

    |

  8. Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)loge(1+r/n)

    Text Solution

    |

  9. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  10. Evaluate : lim(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2...

    Text Solution

    |

  11. lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

    Text Solution

    |

  12. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  13. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  14. lim(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

    Text Solution

    |

  15. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  16. lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

    Text Solution

    |

  17. IfSn=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)(n ra...

    Text Solution

    |

  18. The value of lim(n to oo)sum(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

    Text Solution

    |

  19. The value of lim(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(...

    Text Solution

    |

  20. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |