Home
Class 12
MATHS
lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sq...

`lim_(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4n-3)))` is equal to:

A

1

B

2

C

3

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{1}{n} \left( 1 + \sqrt{\frac{n}{n+1}} + \sqrt{\frac{n}{n+2}} + \ldots + \sqrt{\frac{n}{4n-3}} \right), \] we can break it down step by step. ### Step 1: Rewrite the expression The expression inside the limit can be rewritten as: \[ \lim_{n \to \infty} \frac{1}{n} \left( 1 + \sqrt{\frac{n}{n+1}} + \sqrt{\frac{n}{n+2}} + \ldots + \sqrt{\frac{n}{4n-3}} \right). \] We can express the sum more compactly: \[ \sum_{r=0}^{3n-3} \sqrt{\frac{n}{n+r}}. \] ### Step 2: Simplifying the square root term Now, we simplify the term inside the summation: \[ \sqrt{\frac{n}{n+r}} = \sqrt{\frac{1}{1 + \frac{r}{n}}}. \] ### Step 3: Rewrite the limit The limit now becomes: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=0}^{3n-3} \sqrt{\frac{1}{1 + \frac{r}{n}}}. \] ### Step 4: Change the summation to an integral As \( n \to \infty \), we can approximate the sum by an integral. We set \( t = \frac{r}{n} \), which implies \( r = nt \) and \( dr = n dt \). The limits of \( r \) from \( 0 \) to \( 3n-3 \) correspond to \( t \) from \( 0 \) to \( 3 - \frac{3}{n} \), which approaches \( 3 \) as \( n \to \infty \). Thus, we can rewrite the limit as: \[ \lim_{n \to \infty} \int_0^3 \sqrt{\frac{1}{1+t}} dt. \] ### Step 5: Evaluate the integral The integral can be computed as: \[ \int_0^3 \frac{1}{\sqrt{1+t}} dt. \] Using the substitution \( u = 1+t \), we have \( du = dt \) and the limits change from \( t=0 \) to \( t=3 \) which corresponds to \( u=1 \) to \( u=4 \): \[ \int_1^4 \frac{1}{\sqrt{u}} du = 2\sqrt{u} \bigg|_1^4 = 2\sqrt{4} - 2\sqrt{1} = 4 - 2 = 2. \] ### Final Result Thus, the limit evaluates to: \[ \lim_{n \to \infty} \frac{1}{n} \left( 1 + \sqrt{\frac{n}{n+1}} + \sqrt{\frac{n}{n+2}} + \ldots + \sqrt{\frac{n}{4n-3}} \right) = 2. \] ### Conclusion Therefore, the answer is: \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo)(n!)/((n+1)!-n!)

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

The value of ("lim")_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to

lim _(x to oo) (1)/(n ^(3))(sqrt(n ^(2)+1)+2 sqrt(n ^(2) +2 ^(2))+ .... + n sqrt((n ^(2) + n ^(2)))=:

lim_(n rarr oo)3^(1/n) equals

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

lim_(n to oo)(1)/(n)[tan.(pi)/(4n)+tan.(2pi)/(4n)+…..+tan.(n pi)/(4n)]

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Evaluate: inta^b e^x dx using limit of sum

    Text Solution

    |

  2. Evaluate: inta^bsinx dx using limit of sum

    Text Solution

    |

  3. lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4...

    Text Solution

    |

  4. Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)loge(1+r/n)

    Text Solution

    |

  5. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  6. Evaluate : lim(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2...

    Text Solution

    |

  7. lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

    Text Solution

    |

  8. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  9. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  10. lim(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

    Text Solution

    |

  11. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  12. lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

    Text Solution

    |

  13. IfSn=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)(n ra...

    Text Solution

    |

  14. The value of lim(n to oo)sum(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

    Text Solution

    |

  15. The value of lim(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(...

    Text Solution

    |

  16. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  17. lim(n to oo)(1)/(n)[tan.(pi)/(4n)+tan.(2pi)/(4n)+…..+tan.(n pi)/(4n)]

    Text Solution

    |

  18. If (d)/(dx)f(x)=g(x) for a le x le b then, overset(b)underset(a)int f...

    Text Solution

    |

  19. If underset(1)overset(x)int(dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x ...

    Text Solution

    |

  20. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |