Home
Class 12
MATHS
Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)lo...

Evaluate `lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)`

A

`log((27)/(4e))`

B

`log((27)/(e^(2)))`

C

`log((4)/(e ))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=n+1}^{2n} \log\left(1 + \frac{r}{n}\right), \] we can follow these steps: ### Step 1: Rewrite the summation We start by rewriting the summation term: \[ \log\left(1 + \frac{r}{n}\right). \] ### Step 2: Change the variable Let \( x = \frac{r}{n} \). Then, when \( r = n + 1 \), \( x \to 1 + \frac{1}{n} \) and when \( r = 2n \), \( x \to 2 \). The increment \( dr = n \, dx \). ### Step 3: Convert the summation to an integral The limit can be expressed as: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=n+1}^{2n} \log\left(1 + \frac{r}{n}\right) = \lim_{n \to \infty} \sum_{r=n+1}^{2n} \frac{1}{n} \log\left(1 + \frac{r}{n}\right) \approx \int_{1}^{2} \log(1 + x) \, dx. \] ### Step 4: Evaluate the integral Now we need to evaluate the integral: \[ \int_{1}^{2} \log(1 + x) \, dx. \] Using integration by parts, let \( u = \log(1 + x) \) and \( dv = dx \). Then \( du = \frac{1}{1+x} \, dx \) and \( v = x \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we have: \[ \int \log(1 + x) \, dx = x \log(1 + x) - \int \frac{x}{1 + x} \, dx. \] ### Step 5: Simplify the remaining integral The integral \( \int \frac{x}{1 + x} \, dx \) can be simplified as follows: \[ \int \frac{x}{1+x} \, dx = \int \left(1 - \frac{1}{1+x}\right) \, dx = x - \log(1+x). \] ### Step 6: Combine results Thus, we have: \[ \int \log(1 + x) \, dx = x \log(1 + x) - (x - \log(1 + x)) = (x + 1) \log(1 + x) - x. \] Now evaluate from 1 to 2: \[ \left[(x + 1) \log(1 + x) - x\right]_{1}^{2}. \] Calculating at the bounds: 1. At \( x = 2 \): \[ (2 + 1) \log(3) - 2 = 3 \log(3) - 2. \] 2. At \( x = 1 \): \[ (1 + 1) \log(2) - 1 = 2 \log(2) - 1. \] ### Step 7: Final calculation Thus, we have: \[ \int_{1}^{2} \log(1 + x) \, dx = \left[3 \log(3) - 2\right] - \left[2 \log(2) - 1\right] = 3 \log(3) - 2 - 2 \log(2) + 1 = 3 \log(3) - 2 \log(2) - 1. \] ### Step 8: Simplify the expression This can be expressed as: \[ 3 \log(3) - 2 \log(2) - 1 = \log(3^3) - \log(2^2) - \log(e) = \log\left(\frac{27}{4e}\right). \] ### Final Result Thus, the limit evaluates to: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=n+1}^{2n} \log\left(1 + \frac{r}{n}\right) = \log\left(\frac{27}{4e}\right). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) n^(1/n)

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

If f(x) is integrable over [1,2] then int_(1)^(2)f(x)dx is equal to (a) lim_(nto oo) 1/n sum_(r=1)^(n)f(r/n) (b) lim_(nto oo) 1/n sum_(r=n+1)^(2n) f(r/n) (c) lim_(nto oo) 1/n sum_(r=1)^(n)f((r+n)/n) (d) lim_(nto oo) 1/n sum_(r=1)^(2n)f(r/n)

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

Evaluate: ("lim")_(n->oo)(4^n+5^n)^(1/n)

If f(x) is integrable over [1,2], then int_1^2f(x)dx is equal to (a) ("lim")_(ntooo)1/nsum_(r=1)^nf(r/n) (b) ("lim")_(ntooo)1/nsum_(r=n+1)^(2n)f(r/n) (c) ("lim")_(ntooo)1/nsum_(r=1)^nf((r+n)/n) (d) ("lim")_(ntooo)1/nsum_(r=1)^(2n)f(r/n)

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Evaluate: inta^bsinx dx using limit of sum

    Text Solution

    |

  2. lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4...

    Text Solution

    |

  3. Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)loge(1+r/n)

    Text Solution

    |

  4. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  5. Evaluate : lim(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2...

    Text Solution

    |

  6. lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

    Text Solution

    |

  7. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  8. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  9. lim(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

    Text Solution

    |

  10. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  11. lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

    Text Solution

    |

  12. IfSn=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)(n ra...

    Text Solution

    |

  13. The value of lim(n to oo)sum(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

    Text Solution

    |

  14. The value of lim(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(...

    Text Solution

    |

  15. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  16. lim(n to oo)(1)/(n)[tan.(pi)/(4n)+tan.(2pi)/(4n)+…..+tan.(n pi)/(4n)]

    Text Solution

    |

  17. If (d)/(dx)f(x)=g(x) for a le x le b then, overset(b)underset(a)int f...

    Text Solution

    |

  18. If underset(1)overset(x)int(dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x ...

    Text Solution

    |

  19. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  20. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |