Home
Class 12
MATHS
The value of lim(n to oo)((1)/(1^(3)+n^(...

The value of `lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3)))` is :

A

`(1)/(3)`

B

`(1)/(3)log(2)`

C

`(1)/(2)log(3)`

D

`(1)/(3)log(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we will break it down step by step. ### Step 1: Rewrite the Limit Expression We start with the limit expression: \[ \lim_{n \to \infty} \left( \frac{1^2}{1^3 + n^3} + \frac{2^2}{2^3 + n^3} + \ldots + \frac{n^2}{n^3 + n^3} \right) \] This can be expressed using summation notation: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^2}{r^3 + n^3} \] ### Step 2: Simplify the General Term We can simplify the term inside the summation: \[ \frac{r^2}{r^3 + n^3} = \frac{r^2/n^3}{r^3/n^3 + 1} = \frac{\left(\frac{r}{n}\right)^2}{\left(\frac{r}{n}\right)^3 + 1} \] Let \( x = \frac{r}{n} \). As \( n \to \infty \), \( r \) varies from \( 1 \) to \( n \), thus \( x \) varies from \( \frac{1}{n} \) to \( 1 \). ### Step 3: Change the Summation to an Integral The sum can be approximated by an integral: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{x^2}{x^3 + 1} \cdot \frac{1}{n} \quad \text{(where } dx = \frac{1}{n} \text{)} \] This leads us to: \[ \int_{0}^{1} \frac{x^2}{x^3 + 1} \, dx \] ### Step 4: Solve the Integral Now we need to evaluate the integral: \[ \int_{0}^{1} \frac{x^2}{x^3 + 1} \, dx \] We can use the substitution \( u = x^3 + 1 \), then \( du = 3x^2 \, dx \) or \( dx = \frac{du}{3x^2} \). When \( x = 0 \), \( u = 1 \) and when \( x = 1 \), \( u = 2 \). Thus, the integral becomes: \[ \int_{1}^{2} \frac{x^2}{u} \cdot \frac{du}{3x^2} = \frac{1}{3} \int_{1}^{2} \frac{1}{u} \, du \] This evaluates to: \[ \frac{1}{3} \left[ \ln u \right]_{1}^{2} = \frac{1}{3} (\ln 2 - \ln 1) = \frac{1}{3} \ln 2 \] ### Step 5: Final Result Thus, the limit evaluates to: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^2}{r^3 + n^3} = \frac{1}{3} \ln 2 \] ### Conclusion The value of the limit is: \[ \frac{1}{3} \ln 2 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+....+(1)/(2*n^3)

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

Evaluate lim _( x to oo) ((1^(2) )/(n ^(3) +1 ^(3))+(2 ^(2))/(n ^(3) +2 ^(3)) + (3 ^(2))/(n ^(3)+ 3 ^(3))+ .... + (4)/(9n)).

The value of lim_(nto oo){3sqrt(n^2-n^3)+n} , is

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^(3))(1^(4)+2^(4)+…………n^(4)))/((1^(5)+2^(5)+…………+n^(5))^(2))) is equal to

lim _(x to oo) (1)/(n ^(3))(sqrt(n ^(2)+1)+2 sqrt(n ^(2) +2 ^(2))+ .... + n sqrt((n ^(2) + n ^(2)))=:

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0

Evaluate lim_(ntooo) (1^(3)+2^(3)+3^(3)+...+n^(3))/(sqrt(4n^(8)+1)).

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. lim(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4...

    Text Solution

    |

  2. Evaluate lim(n->oo)1/nsum(r=n+1)^(2n)loge(1+r/n)

    Text Solution

    |

  3. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  4. Evaluate : lim(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2...

    Text Solution

    |

  5. lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

    Text Solution

    |

  6. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  7. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  8. lim(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

    Text Solution

    |

  9. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  10. lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

    Text Solution

    |

  11. IfSn=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)(n ra...

    Text Solution

    |

  12. The value of lim(n to oo)sum(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

    Text Solution

    |

  13. The value of lim(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(...

    Text Solution

    |

  14. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  15. lim(n to oo)(1)/(n)[tan.(pi)/(4n)+tan.(2pi)/(4n)+…..+tan.(n pi)/(4n)]

    Text Solution

    |

  16. If (d)/(dx)f(x)=g(x) for a le x le b then, overset(b)underset(a)int f...

    Text Solution

    |

  17. If underset(1)overset(x)int(dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x ...

    Text Solution

    |

  18. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  19. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  20. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |