Home
Class 12
MATHS
lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))...

`lim_(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+....+(1)/(2*n^3)`

A

`(1)/(2)log 2`

B

`(1)/(3)log 2`

C

`(1)/(4) log 2`

D

`log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \frac{1}{1+n^3} + \frac{4}{8+n^3} + \ldots + \frac{r^2}{r^3+n^3} + \ldots + \frac{1}{2n^3} \right), \] we can express this as a summation: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^2}{r^3 + n^3}. \] ### Step 1: Rewrite the Summation We can factor out \(n^3\) from the denominator: \[ \frac{r^2}{r^3 + n^3} = \frac{r^2/n^3}{r^3/n^3 + 1} = \frac{\left(\frac{r}{n}\right)^2}{\left(\frac{r}{n}\right)^3 + 1}. \] ### Step 2: Change of Variables Let \(x = \frac{r}{n}\). As \(n \to \infty\), \(r\) goes from \(1\) to \(n\), which means \(x\) goes from \(\frac{1}{n}\) to \(1\). The increment in \(r\) corresponds to an increment in \(x\) of \(\frac{1}{n}\). Thus, we can rewrite the sum as: \[ \sum_{r=1}^{n} \frac{r^2/n^3}{r^3/n^3 + 1} \cdot \frac{1}{n} \approx \int_{0}^{1} \frac{x^2}{x^3 + 1} \, dx. \] ### Step 3: Set Up the Integral Now we need to evaluate the integral: \[ \int_{0}^{1} \frac{x^2}{x^3 + 1} \, dx. \] ### Step 4: Use Substitution Let \(t = x^3 + 1\). Then, \(dt = 3x^2 \, dx\) or \(dx = \frac{dt}{3x^2}\). When \(x = 0\), \(t = 1\) and when \(x = 1\), \(t = 2\). Thus, we can rewrite the integral: \[ \int_{1}^{2} \frac{x^2}{t} \cdot \frac{dt}{3x^2} = \frac{1}{3} \int_{1}^{2} \frac{1}{t} \, dt. \] ### Step 5: Evaluate the Integral The integral \(\int \frac{1}{t} \, dt\) is \(\ln(t)\). Therefore, we have: \[ \frac{1}{3} \left[ \ln(t) \right]_{1}^{2} = \frac{1}{3} (\ln(2) - \ln(1)) = \frac{1}{3} \ln(2). \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{n \to \infty} \left( \frac{1}{1+n^3} + \frac{4}{8+n^3} + \ldots + \frac{1}{2n^3} \right) = \frac{1}{3} \ln(2). \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

Evaluate lim _( x to oo) ((1^(2) )/(n ^(3) +1 ^(3))+(2 ^(2))/(n ^(3) +2 ^(3)) + (3 ^(2))/(n ^(3)+ 3 ^(3))+ .... + (4)/(9n)).

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

lim_(n to oo){(1^(m)+2^(m)+3^(m)+...+ n^(m))/(n^(m+1))} equals

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

    Text Solution

    |

  2. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  3. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  4. lim(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

    Text Solution

    |

  5. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  6. lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

    Text Solution

    |

  7. IfSn=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)(n ra...

    Text Solution

    |

  8. The value of lim(n to oo)sum(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

    Text Solution

    |

  9. The value of lim(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(...

    Text Solution

    |

  10. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  11. lim(n to oo)(1)/(n)[tan.(pi)/(4n)+tan.(2pi)/(4n)+…..+tan.(n pi)/(4n)]

    Text Solution

    |

  12. If (d)/(dx)f(x)=g(x) for a le x le b then, overset(b)underset(a)int f...

    Text Solution

    |

  13. If underset(1)overset(x)int(dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x ...

    Text Solution

    |

  14. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  15. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  16. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  17. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to -...

    Text Solution

    |

  18. If f(-x)+f(x)=0 then inta^x f(t) dt is

    Text Solution

    |

  19. If int0^af(2a-x)dx=m and int0^af(x)dx=n, then int0^(2a) f(x) dx is equ...

    Text Solution

    |

  20. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |