Home
Class 12
MATHS
lim(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(...

`lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]`

A

`(1)/(2)log 2`

B

`-(pi)/(4)+(1)/(2)log 2`

C

`pi + (1)/(2) log 2`

D

`(pi)/(4)+(1)/(2) log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left[ \frac{n+1}{n^2 + 1^2} + \frac{n+2}{n^2 + 2^2} + \ldots + \frac{1}{n} \right], \] we can rewrite this expression in summation form: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{n+r}{n^2 + r^2}. \] ### Step 1: Rewrite the terms We can factor \(n^2\) out of the denominator: \[ \frac{n+r}{n^2 + r^2} = \frac{n+r}{n^2(1 + \frac{r^2}{n^2})} = \frac{1 + \frac{r}{n}}{n(1 + \frac{r^2}{n^2})}. \] ### Step 2: Express the limit as a Riemann sum Now we can express the sum as: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1 + \frac{r}{n}}{n(1 + \frac{r^2}{n^2})}. \] As \(n\) approaches infinity, \(\frac{r}{n}\) approaches \(x\) where \(x\) ranges from \(0\) to \(1\) as \(r\) goes from \(1\) to \(n\). Therefore, we can express this sum as a Riemann sum: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \left( \frac{1 + \frac{r}{n}}{1 + \left(\frac{r}{n}\right)^2} \cdot \frac{1}{n} \right). \] ### Step 3: Change of variables Let \(x = \frac{r}{n}\). Then \(dx = \frac{1}{n}\) and the limits of integration change from \(0\) to \(1\): \[ \int_{0}^{1} \frac{1+x}{1+x^2} \, dx. \] ### Step 4: Split the integral We can split the integral: \[ \int_{0}^{1} \frac{1+x}{1+x^2} \, dx = \int_{0}^{1} \frac{1}{1+x^2} \, dx + \int_{0}^{1} \frac{x}{1+x^2} \, dx. \] ### Step 5: Evaluate the first integral The first integral can be evaluated as: \[ \int_{0}^{1} \frac{1}{1+x^2} \, dx = \tan^{-1}(x) \bigg|_{0}^{1} = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}. \] ### Step 6: Evaluate the second integral For the second integral, we use the substitution \(u = 1 + x^2\), which gives \(du = 2x \, dx\) or \(dx = \frac{du}{2x}\): \[ \int_{0}^{1} \frac{x}{1+x^2} \, dx = \frac{1}{2} \int_{1}^{2} \frac{1}{u} \, du = \frac{1}{2} \ln(u) \bigg|_{1}^{2} = \frac{1}{2} (\ln(2) - \ln(1)) = \frac{1}{2} \ln(2). \] ### Step 7: Combine the results Combining both results, we have: \[ \int_{0}^{1} \frac{1+x}{1+x^2} \, dx = \frac{\pi}{4} + \frac{1}{2} \ln(2). \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{n \to \infty} \left[ \frac{n+1}{n^2 + 1^2} + \frac{n+2}{n^2 + 2^2} + \ldots + \frac{1}{n} \right] = \frac{\pi}{4} + \frac{1}{2} \ln(2). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

lim_(n rarr oo)2^(1/n)

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

The value of lim_(ntooo)[1/(n^(2)+1^(2))+2/(n^(2)+2^(2))+………….+n/(n^(2)+n^(2))] , is

lim _(x to oo) (1)/(n ^(3))(sqrt(n ^(2)+1)+2 sqrt(n ^(2) +2 ^(2))+ .... + n sqrt((n ^(2) + n ^(2)))=:

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  2. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  3. lim(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

    Text Solution

    |

  4. underset(nrarroo)("lim")[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))"....."(1+(...

    Text Solution

    |

  5. lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

    Text Solution

    |

  6. IfSn=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)(n ra...

    Text Solution

    |

  7. The value of lim(n to oo)sum(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

    Text Solution

    |

  8. The value of lim(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(...

    Text Solution

    |

  9. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  10. lim(n to oo)(1)/(n)[tan.(pi)/(4n)+tan.(2pi)/(4n)+…..+tan.(n pi)/(4n)]

    Text Solution

    |

  11. If (d)/(dx)f(x)=g(x) for a le x le b then, overset(b)underset(a)int f...

    Text Solution

    |

  12. If underset(1)overset(x)int(dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x ...

    Text Solution

    |

  13. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  14. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  15. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  16. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to -...

    Text Solution

    |

  17. If f(-x)+f(x)=0 then inta^x f(t) dt is

    Text Solution

    |

  18. If int0^af(2a-x)dx=m and int0^af(x)dx=n, then int0^(2a) f(x) dx is equ...

    Text Solution

    |

  19. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  20. lim(x to 0)(int(0)^(x^(2))(tan^(-1)t)dt)/(int(0)^(x^(2))sin sqrt(t)dt)...

    Text Solution

    |