Home
Class 12
MATHS
The value of lim(n to oo)sum(r=1)^(n)(1)...

The value of `lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r)))` is :

A

`(pi)/(2)-2`

B

`(pi)/(2)+2`

C

`(pi)/(2)-1`

D

`(pi)/(2)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \sqrt{\frac{n+r}{n-r}}, \] we can interpret the sum as a Riemann sum that approaches an integral as \( n \) approaches infinity. Here’s how we can derive the solution step by step: ### Step 1: Rewrite the expression inside the limit We start with the expression: \[ \sqrt{\frac{n+r}{n-r}}. \] We can simplify this by factoring \( n \) out of the numerator and denominator: \[ \sqrt{\frac{n+r}{n-r}} = \sqrt{\frac{n(1 + \frac{r}{n})}{n(1 - \frac{r}{n})}} = \sqrt{\frac{1 + \frac{r}{n}}{1 - \frac{r}{n}}}. \] ### Step 2: Substitute \( x = \frac{r}{n} \) Let \( x = \frac{r}{n} \). Then, as \( r \) runs from \( 1 \) to \( n \), \( x \) runs from \( \frac{1}{n} \) to \( 1 \). The term \( \frac{1}{n} \) can be interpreted as \( dx \) when we take the limit as \( n \to \infty \). ### Step 3: Change the sum to an integral The sum can now be rewritten as: \[ \sum_{r=1}^{n} \frac{1}{n} \sqrt{\frac{1 + \frac{r}{n}}{1 - \frac{r}{n}}} \approx \int_{0}^{1} \sqrt{\frac{1+x}{1-x}} \, dx. \] ### Step 4: Evaluate the integral Now we need to evaluate the integral: \[ \int_{0}^{1} \sqrt{\frac{1+x}{1-x}} \, dx. \] To simplify this integral, we can multiply and divide by \( \sqrt{1+x} \): \[ \int_{0}^{1} \frac{1+x}{\sqrt{(1-x)(1+x)}} \, dx. \] This can be split into two parts: \[ \int_{0}^{1} \frac{1}{\sqrt{1-x^2}} \, dx + \int_{0}^{1} \frac{x}{\sqrt{1-x^2}} \, dx. \] ### Step 5: Solve the first integral The first integral can be recognized as: \[ \int_{0}^{1} \frac{1}{\sqrt{1-x^2}} \, dx = \frac{\pi}{2}. \] ### Step 6: Solve the second integral For the second integral, we can use the substitution \( u = 1 - x^2 \), which gives us: \[ \int_{0}^{1} \frac{x}{\sqrt{1-x^2}} \, dx = -\frac{1}{2} \int_{1}^{0} u^{-1/2} \, du = \frac{1}{2}. \] ### Step 7: Combine the results Combining both integrals, we have: \[ \int_{0}^{1} \sqrt{\frac{1+x}{1-x}} \, dx = \frac{\pi}{2} + \frac{1}{2}. \] ### Final Result Thus, the final result for the limit is: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \sqrt{\frac{n+r}{n-r}} = \frac{\pi}{2} - 1. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) n^(1/n)

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

l isum_(n-gtoo)sum_(r=1)^n1/(sqrt(4n^2-r^2))

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

    Text Solution

    |

  2. IfSn=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)(n ra...

    Text Solution

    |

  3. The value of lim(n to oo)sum(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

    Text Solution

    |

  4. The value of lim(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(...

    Text Solution

    |

  5. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  6. lim(n to oo)(1)/(n)[tan.(pi)/(4n)+tan.(2pi)/(4n)+…..+tan.(n pi)/(4n)]

    Text Solution

    |

  7. If (d)/(dx)f(x)=g(x) for a le x le b then, overset(b)underset(a)int f...

    Text Solution

    |

  8. If underset(1)overset(x)int(dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x ...

    Text Solution

    |

  9. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  10. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  11. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  12. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to -...

    Text Solution

    |

  13. If f(-x)+f(x)=0 then inta^x f(t) dt is

    Text Solution

    |

  14. If int0^af(2a-x)dx=m and int0^af(x)dx=n, then int0^(2a) f(x) dx is equ...

    Text Solution

    |

  15. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  16. lim(x to 0)(int(0)^(x^(2))(tan^(-1)t)dt)/(int(0)^(x^(2))sin sqrt(t)dt)...

    Text Solution

    |

  17. Find the points of maxima /minima of int(0)^(x^(2))(t^(2)-5t+4)/(2+e^(...

    Text Solution

    |

  18. Let f(x)=underset(0)overset(x)int |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  19. If x=int(c^(2))^(tan t)tan^(-1)z dz, y= int(n)^(sqrt(t))(cos(z^(2)))/(...

    Text Solution

    |

  20. Area of the ellipse x^2/a^2+y^2/b^2=1is piab

    Text Solution

    |