Home
Class 12
MATHS
The value of lim(n->oo)(sqrt(1)+sqrt(2)+...

The value of `lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n))` is

A

`2//3`

B

`1//2`

C

`1//3`

D

`3//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{\sqrt{1} + \sqrt{2} + \sqrt{3} + \ldots + \sqrt{n}}{n \sqrt{n}}, \] we can approach it using the concept of Riemann sums, which can be interpreted as integrals. ### Step 1: Rewrite the Sum The numerator can be expressed as a summation: \[ \sum_{r=1}^{n} \sqrt{r}. \] Thus, we can rewrite our limit as: \[ \lim_{n \to \infty} \frac{1}{n \sqrt{n}} \sum_{r=1}^{n} \sqrt{r}. \] ### Step 2: Change to Riemann Sum We recognize that as \( n \) approaches infinity, the sum can be approximated by an integral. To do this, we can express \( \sqrt{r} \) in terms of \( n \): Let \( x = \frac{r}{n} \), which implies \( r = nx \). The increment \( \Delta r \) can be approximated as \( n \Delta x \) where \( \Delta x = \frac{1}{n} \). Thus, we can rewrite the sum: \[ \sum_{r=1}^{n} \sqrt{r} = \sum_{r=1}^{n} \sqrt{n x} = \sqrt{n} \sum_{r=1}^{n} \sqrt{x} \Delta x. \] ### Step 3: Set Up the Integral The limit now becomes: \[ \lim_{n \to \infty} \frac{\sqrt{n}}{n \sqrt{n}} \sum_{r=1}^{n} \sqrt{x} \Delta x = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \sqrt{x} \Delta x. \] As \( n \to \infty \), this sum approaches the integral: \[ \int_{0}^{1} \sqrt{x} \, dx. \] ### Step 4: Calculate the Integral Now we compute the integral: \[ \int_{0}^{1} \sqrt{x} \, dx. \] The antiderivative of \( \sqrt{x} \) is: \[ \frac{2}{3} x^{3/2}. \] Evaluating this from 0 to 1 gives: \[ \left[ \frac{2}{3} x^{3/2} \right]_{0}^{1} = \frac{2}{3}(1) - \frac{2}{3}(0) = \frac{2}{3}. \] ### Step 5: Final Result Thus, the value of the limit is: \[ \lim_{n \to \infty} \frac{\sqrt{1} + \sqrt{2} + \sqrt{3} + \ldots + \sqrt{n}}{n \sqrt{n}} = \frac{2}{3}. \] ### Conclusion The final answer is: \[ \frac{2}{3}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(x->oo)(sqrt(x+sqrt(x))-sqrt(x)) equals

The value of lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

The value of : lim_(ntooo)((1)/(sqrtn sqrt(n+1))+(1)/(sqrtn sqrt(n+2))+ (1)/(sqrtn sqrt(n +3)) + ...... +(1)/(sqrtn sqrt(2n))) is:

The value of lim_(nto oo){3sqrt(n^2-n^3)+n} , is

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. IfSn=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)(n ra...

    Text Solution

    |

  2. The value of lim(n to oo)sum(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

    Text Solution

    |

  3. The value of lim(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(...

    Text Solution

    |

  4. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  5. lim(n to oo)(1)/(n)[tan.(pi)/(4n)+tan.(2pi)/(4n)+…..+tan.(n pi)/(4n)]

    Text Solution

    |

  6. If (d)/(dx)f(x)=g(x) for a le x le b then, overset(b)underset(a)int f...

    Text Solution

    |

  7. If underset(1)overset(x)int(dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x ...

    Text Solution

    |

  8. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  9. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  10. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  11. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to -...

    Text Solution

    |

  12. If f(-x)+f(x)=0 then inta^x f(t) dt is

    Text Solution

    |

  13. If int0^af(2a-x)dx=m and int0^af(x)dx=n, then int0^(2a) f(x) dx is equ...

    Text Solution

    |

  14. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  15. lim(x to 0)(int(0)^(x^(2))(tan^(-1)t)dt)/(int(0)^(x^(2))sin sqrt(t)dt)...

    Text Solution

    |

  16. Find the points of maxima /minima of int(0)^(x^(2))(t^(2)-5t+4)/(2+e^(...

    Text Solution

    |

  17. Let f(x)=underset(0)overset(x)int |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  18. If x=int(c^(2))^(tan t)tan^(-1)z dz, y= int(n)^(sqrt(t))(cos(z^(2)))/(...

    Text Solution

    |

  19. Area of the ellipse x^2/a^2+y^2/b^2=1is piab

    Text Solution

    |

  20. Prove that the area in the first quadrant enclosed by the axis, the ...

    Text Solution

    |