Home
Class 12
MATHS
If (d)/(dx)f(x)=g(x) for a le x le b th...

If `(d)/(dx)f(x)=g(x)` for `a le x le b` then, `overset(b)underset(a)int f(x) g(x) dx` equals

A

`g(b)-f(a)`

B

`g(b)-g(a)`

C

`(f^(2)(b)-f^(2)(a))/(2)`

D

`(g^(2)(b)-g^(2)(a))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information that the derivative of \( f(x) \) with respect to \( x \) is \( g(x) \) for \( a \leq x \leq b \). We want to evaluate the integral \[ \int_a^b f(x) g(x) \, dx. \] ### Step-by-Step Solution: 1. **Substitution**: We know that \( g(x) = \frac{d}{dx} f(x) \). Therefore, we can rewrite the integral as: \[ \int_a^b f(x) g(x) \, dx = \int_a^b f(x) \frac{d}{dx} f(x) \, dx. \] 2. **Integration by Parts**: We will use integration by parts. Let: - \( u = f(x) \) (which implies \( du = g(x) \, dx \)) - \( dv = g(x) \, dx \) (which implies \( v = f(x) \)) The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du. \] 3. **Applying Integration by Parts**: Applying the integration by parts formula, we have: \[ \int_a^b f(x) g(x) \, dx = \left[ f(x) f(x) \right]_a^b - \int_a^b f(x) g(x) \, dx. \] 4. **Evaluating the Boundary Terms**: The boundary terms evaluate to: \[ \left[ f(x) f(x) \right]_a^b = f(b)f(b) - f(a)f(a) = f(b)^2 - f(a)^2. \] 5. **Final Expression**: Therefore, we can write: \[ \int_a^b f(x) g(x) \, dx = \frac{1}{2} \left( f(b)^2 - f(a)^2 \right). \] 6. **Conclusion**: Thus, the integral \( \int_a^b f(x) g(x) \, dx \) equals: \[ \frac{f(b)^2 - f(a)^2}{2}. \] ### Final Answer: The final result is: \[ \int_a^b f(x) g(x) \, dx = \frac{f(b)^2 - f(a)^2}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=f(a+b-x) , then overset(b)underset(a)int xf(x)dx is equal to

Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)int f(2a-x)dx=mu . Then, overset(2a)underset(0)int f(x) dx equal to

(d)/(dx)(int_(f(x))^(g(x)) phi(t)dt) is equal to

If f(x)=x+tanx and g(x) is the inverse of f(x) , then differentiation of g(x) is (a) 1/(1+[g(x)-x]^2) (b) 1/(2-[g(x)+x]^2) (c)1/(2+[g(x)-x]^2) (d) none of these

If intf(x)dx=g(x)+c and f^(-1)(x) is differentiable, then intf^(-1)(x)dx equal to

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

Let f _(1)(x) =e ^(x) and f _(n+1) (x) =e ^(f _(n)(x))) for any n ge 1, n in N. Then for any fixed n, the vlaue of (d)/(dx) f )(n)(x) equals:

"If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then evaluate int_(1)^(3) f(x) dx.

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  2. lim(n to oo)(1)/(n)[tan.(pi)/(4n)+tan.(2pi)/(4n)+…..+tan.(n pi)/(4n)]

    Text Solution

    |

  3. If (d)/(dx)f(x)=g(x) for a le x le b then, overset(b)underset(a)int f...

    Text Solution

    |

  4. If underset(1)overset(x)int(dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x ...

    Text Solution

    |

  5. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  6. If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))and (d^(2)y)/(dx^(2))=a^(2)y then ...

    Text Solution

    |

  7. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  8. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to -...

    Text Solution

    |

  9. If f(-x)+f(x)=0 then inta^x f(t) dt is

    Text Solution

    |

  10. If int0^af(2a-x)dx=m and int0^af(x)dx=n, then int0^(2a) f(x) dx is equ...

    Text Solution

    |

  11. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  12. lim(x to 0)(int(0)^(x^(2))(tan^(-1)t)dt)/(int(0)^(x^(2))sin sqrt(t)dt)...

    Text Solution

    |

  13. Find the points of maxima /minima of int(0)^(x^(2))(t^(2)-5t+4)/(2+e^(...

    Text Solution

    |

  14. Let f(x)=underset(0)overset(x)int |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  15. If x=int(c^(2))^(tan t)tan^(-1)z dz, y= int(n)^(sqrt(t))(cos(z^(2)))/(...

    Text Solution

    |

  16. Area of the ellipse x^2/a^2+y^2/b^2=1is piab

    Text Solution

    |

  17. Prove that the area in the first quadrant enclosed by the axis, the ...

    Text Solution

    |

  18. Find the area bounded by the curve x^2=4y and the straight line x=4y-2...

    Text Solution

    |

  19. Find the area of the figure bounded by the parabolas x=-2y^2, x=1-3y^2...

    Text Solution

    |

  20. Find the area bounded by the parabola y=2-x^2 and the straight line y+...

    Text Solution

    |