Home
Class 12
MATHS
If f(-x)+f(x)=0 then inta^x f(t) dt ...

If `f(-x)+f(x)=0` then `int_a^x f(t) dt` is

A

An odd function

B

An even function

C

A periodic function

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given condition and the integral. ### Step-by-Step Solution: 1. **Understanding the Condition**: We are given that \( f(-x) + f(x) = 0 \). This implies that: \[ f(-x) = -f(x) \] This means that \( f(x) \) is an odd function. **Hint**: Recognize that the property \( f(-x) = -f(x) \) defines odd functions. 2. **Defining the Integral**: Let: \[ \pi(x) = \int_a^x f(t) \, dt \] We need to analyze \( \pi(-x) \). **Hint**: Define the integral clearly and denote it with a simple function name. 3. **Calculating \( \pi(-x) \)**: We can express \( \pi(-x) \) as follows: \[ \pi(-x) = \int_a^{-x} f(t) \, dt \] To evaluate this integral, we perform a change of variable. Let \( t = -y \), then \( dt = -dy \). The limits change as follows: when \( t = a \), \( y = -a \) and when \( t = -x \), \( y = x \). Thus: \[ \pi(-x) = \int_{-a}^{x} f(-y)(-dy) = \int_{-a}^{x} -f(y) \, dy = -\int_{-a}^{x} f(y) \, dy \] **Hint**: Use substitution to change the variable in the integral. 4. **Rearranging the Integral**: Now we can express \( \pi(-x) \): \[ \pi(-x) = -\left( \int_{-a}^{a} f(y) \, dy + \int_a^x f(y) \, dy \right) \] This can be simplified to: \[ \pi(-x) = -\int_{-a}^{a} f(y) \, dy - \int_a^x f(y) \, dy \] **Hint**: Break down the integral into parts that can be analyzed separately. 5. **Using the Property of Odd Functions**: Since \( f(y) \) is an odd function, the integral from \(-a\) to \(a\) will be zero: \[ \int_{-a}^{a} f(y) \, dy = 0 \] Therefore: \[ \pi(-x) = -\int_a^x f(y) \, dy \] **Hint**: Recall that the integral of an odd function over symmetric limits is zero. 6. **Conclusion**: Since \( \pi(-x) = -\pi(x) \), we conclude that \( \pi(x) \) is an odd function. **Final Answer**: The integral \( \int_a^x f(t) \, dt \) is an odd function.
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Let f ( x) = int _ 0 ^ x g (t) dt , where g is a non - zero even function . If f(x + 5 ) = g (x) , then int _ 0 ^ x f (t ) dt equals :

Let f :R ^(+) to R be a differentiable function with f (1)=3 and satisfying : int _(1) ^(xy) f(t) dt =y int_(1) ^(x) f (t) dt +x int_(1) ^(y) f (t) dt AA x, y in R^(+), then f (e) =

Let f be a real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6) Prove that int_x^(x+8)f(t)dt is constant function.

f(x) : [0, 5] → R, F(x) = int_(0)^(x) x^2 g(x) , f(1) = 3 g(x) = int_(1)^(x) f(t) dt then correct choice is

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

If f(x) = 2x^(3)-15x^(2)+24x and g(x) = int_(0)^(x)f(t) dt + int_(0)^(5-x) f(t) dt (0 lt x lt 5) . Find the number of integers for which g(x) is increasing.

If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int_(1//x)^(x) f(t)dt, (1)/(2) le x le 2x , then I is equal to

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=int_0^x tf(t)dt+2, then

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  2. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to -...

    Text Solution

    |

  3. If f(-x)+f(x)=0 then inta^x f(t) dt is

    Text Solution

    |

  4. If int0^af(2a-x)dx=m and int0^af(x)dx=n, then int0^(2a) f(x) dx is equ...

    Text Solution

    |

  5. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  6. lim(x to 0)(int(0)^(x^(2))(tan^(-1)t)dt)/(int(0)^(x^(2))sin sqrt(t)dt)...

    Text Solution

    |

  7. Find the points of maxima /minima of int(0)^(x^(2))(t^(2)-5t+4)/(2+e^(...

    Text Solution

    |

  8. Let f(x)=underset(0)overset(x)int |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  9. If x=int(c^(2))^(tan t)tan^(-1)z dz, y= int(n)^(sqrt(t))(cos(z^(2)))/(...

    Text Solution

    |

  10. Area of the ellipse x^2/a^2+y^2/b^2=1is piab

    Text Solution

    |

  11. Prove that the area in the first quadrant enclosed by the axis, the ...

    Text Solution

    |

  12. Find the area bounded by the curve x^2=4y and the straight line x=4y-2...

    Text Solution

    |

  13. Find the area of the figure bounded by the parabolas x=-2y^2, x=1-3y^2...

    Text Solution

    |

  14. Find the area bounded by the parabola y=2-x^2 and the straight line y+...

    Text Solution

    |

  15. Calculate the area enclosed by the parabola y^(2)=x+3y and the Y-axis...

    Text Solution

    |

  16. Prove that the area bonded by the parabola y^2=5x+6 and x^2=y is 81/1...

    Text Solution

    |

  17. The area common to the circle x^2 + y^2 = 64 and the parabola y^2 = 12...

    Text Solution

    |

  18. A O B is the positive quadrant of the ellipse (x^2)/(a^2)+(y^2)/(b^...

    Text Solution

    |

  19. Sketch the region bounded by the curves y=x^2a n dy=2/(1+x^2) . Find t...

    Text Solution

    |

  20. Let f(x) be a function defined by f (x)=int1^x x(x^2-3x+2)dx, 1 leq x...

    Text Solution

    |