Home
Class 12
MATHS
If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0...

If `f(y)=e^(y),g(y)=y,ygt0` and `F(t)=int_(0)^(1)f(t-y)g(y)dt` then

A

`F(t)=1-e^(-1)(l+t)`

B

`F(t)=e^(t)-(l+t)`

C

`F(t)=te^(t)`

D

`F(t)=te^(-t)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If f(y)=e^y,g(y)=y,y>0, and F(t)=int_0^t f(t-y)g(y) dy , then

If f(y)=e^y ,g(y) = y>0,a n d \ F(t)=int_0^t f(t-y)g(y)dy ,then

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If f(x-y)=f(x).g(y)-f(y).g(x) and g(x-y)=g(x).g(y)+f(x).f(y) for all x in R . If right handed derivative at x=0 exists for f(x) find the derivative of g(x) at x =0

If f(x-y)=f(x).g(y)-f(y).g(x) and g(x-y)=g(x).g(y)+f(x).f(y) for all x in R . If right handed derivative at x=0 exists for f(x) find the derivative of g(x) at x =0

Suppose f(x) and g(x) are two continuous functions defined for 0<=x<=1 .Given, f(x)=int_0^1 e^(x+1) .f(t) dt and g(x)=int_0^1 e^(x+1) *g(t) dt+x The value of f( 1) equals

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

Given a function 'g' continous everywhere such that int _(0) ^(1) g (t ) dt =2 and g (1)=5. If f (x ) =1/2 int _(0) ^(x) (x-t) ^(2)g (t)dt, then the vlaue of f'''(1)-f''(1) is:

Given a function 'g' continous everywhere such that int _(0) ^(1) g (t ) dt =2 and g (1)=5. If f (x ) =1/2 int _(0) ^(x) (x-t) ^(2)g (t)dt, then the vlaue of f''(1)-f'(1) is:

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. If f(-x)+f(x)=0 then inta^x f(t) dt is

    Text Solution

    |

  2. If int0^af(2a-x)dx=m and int0^af(x)dx=n, then int0^(2a) f(x) dx is equ...

    Text Solution

    |

  3. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  4. lim(x to 0)(int(0)^(x^(2))(tan^(-1)t)dt)/(int(0)^(x^(2))sin sqrt(t)dt)...

    Text Solution

    |

  5. Find the points of maxima /minima of int(0)^(x^(2))(t^(2)-5t+4)/(2+e^(...

    Text Solution

    |

  6. Let f(x)=underset(0)overset(x)int |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  7. If x=int(c^(2))^(tan t)tan^(-1)z dz, y= int(n)^(sqrt(t))(cos(z^(2)))/(...

    Text Solution

    |

  8. Area of the ellipse x^2/a^2+y^2/b^2=1is piab

    Text Solution

    |

  9. Prove that the area in the first quadrant enclosed by the axis, the ...

    Text Solution

    |

  10. Find the area bounded by the curve x^2=4y and the straight line x=4y-2...

    Text Solution

    |

  11. Find the area of the figure bounded by the parabolas x=-2y^2, x=1-3y^2...

    Text Solution

    |

  12. Find the area bounded by the parabola y=2-x^2 and the straight line y+...

    Text Solution

    |

  13. Calculate the area enclosed by the parabola y^(2)=x+3y and the Y-axis...

    Text Solution

    |

  14. Prove that the area bonded by the parabola y^2=5x+6 and x^2=y is 81/1...

    Text Solution

    |

  15. The area common to the circle x^2 + y^2 = 64 and the parabola y^2 = 12...

    Text Solution

    |

  16. A O B is the positive quadrant of the ellipse (x^2)/(a^2)+(y^2)/(b^...

    Text Solution

    |

  17. Sketch the region bounded by the curves y=x^2a n dy=2/(1+x^2) . Find t...

    Text Solution

    |

  18. Let f(x) be a function defined by f (x)=int1^x x(x^2-3x+2)dx, 1 leq x...

    Text Solution

    |

  19. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  20. Find out the area bounded by the curve y=int(1//8)^(sin^(2)x)(sin^(-1)...

    Text Solution

    |