Home
Class 12
MATHS
If x=int(c^(2))^(tan t)tan^(-1)z dz, y= ...

If `x=int_(c^(2))^(tan t)tan^(-1)z dz, y= int_(n)^(sqrt(t))(cos(z^(2)))/(z)dx` then `(dy)/(dx)` is equal to : (where c and n are constants) :

A

`(tan t)/(2 t)`

B

`(cos^(2)t)/(t^(2))`

C

`(cos^(3)t)/(2t^(2))`

D

`(tan t^(2))/(2t^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) given the integrals for \(x\) and \(y\). Let's break it down step by step. ### Step 1: Define the integrals We have: \[ x = \int_{c^2}^{\tan t} \tan^{-1} z \, dz \] \[ y = \int_{n}^{\sqrt{t}} \frac{\cos(z^2)}{z} \, dz \] ### Step 2: Differentiate \(x\) with respect to \(t\) Using Leibniz's rule for differentiation under the integral sign, we differentiate \(x\): \[ \frac{dx}{dt} = \frac{d}{dt} \left( \int_{c^2}^{\tan t} \tan^{-1} z \, dz \right) \] According to Leibniz's rule: \[ \frac{dx}{dt} = \tan^{-1}(\tan t) \cdot \frac{d}{dt}(\tan t) - \tan^{-1}(c^2) \cdot \frac{d}{dt}(c^2) \] Since \(c\) is a constant, \(\frac{d}{dt}(c^2) = 0\): \[ \frac{dx}{dt} = t \cdot \sec^2 t \] ### Step 3: Differentiate \(y\) with respect to \(t\) Now, we differentiate \(y\): \[ \frac{dy}{dt} = \frac{d}{dt} \left( \int_{n}^{\sqrt{t}} \frac{\cos(z^2)}{z} \, dz \right) \] Using Leibniz's rule again: \[ \frac{dy}{dt} = \frac{\cos(\sqrt{t}^2)}{\sqrt{t}} \cdot \frac{d}{dt}(\sqrt{t}) - \frac{\cos(n^2)}{n} \cdot \frac{d}{dt}(n) \] Again, since \(n\) is a constant, \(\frac{d}{dt}(n) = 0\): \[ \frac{dy}{dt} = \frac{\cos(t)}{\sqrt{t}} \cdot \frac{1}{2\sqrt{t}} = \frac{\cos(t)}{2t} \] ### Step 4: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\frac{\cos(t)}{2t}}{t \sec^2 t} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\cos(t)}{2t} \cdot \frac{1}{t \sec^2 t} = \frac{\cos(t)}{2t^2} \cdot \cos^2(t) \] Thus, we have: \[ \frac{dy}{dx} = \frac{\cos^3(t)}{2t^2} \] ### Final Answer The final result is: \[ \frac{dy}{dx} = \frac{\cos^3(t)}{2t^2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Ifx=int_c^(sint)sin^(-1)z dz ,y=int_k^(sqrt(t))(sinz^2)/zdz ,t h e n(dy)/(dx) is \ equals

If x=int_c^(sint)sin^(-1)z dz ,y =int_k^(sqrt(t))(sinz^2)/zdz, then (dy)/(dx) is equal to (a) (tant)/(2t) (b) (tant)/(t^2) (c) t/(2t^2) (d) (tan t)/(2t^2)

If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

if sqrt(x^2+y^2)=e^t where t=sin^-1 (y/sqrt(x^2+y^2)) then (dy)/(dx) is equal to :

int(dz)/(z sqrt(z^(2)-1))

int_(0)^(pi//8) tan^(2) 2x dx is equal to

If y=sqrt((a-x)(x-b))- (a-b)tan^(-1)sqrt((a-x)/(x-b)),t h e n d(dy)/(dx) is equal to'

If I_(1)=int_(0)^(x) e^("zx ")e^(-z^(2))dz and I_(2)=int_(0)^(x) e^(-z^(2)//4)dz , them

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Find the points of maxima /minima of int(0)^(x^(2))(t^(2)-5t+4)/(2+e^(...

    Text Solution

    |

  2. Let f(x)=underset(0)overset(x)int |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  3. If x=int(c^(2))^(tan t)tan^(-1)z dz, y= int(n)^(sqrt(t))(cos(z^(2)))/(...

    Text Solution

    |

  4. Area of the ellipse x^2/a^2+y^2/b^2=1is piab

    Text Solution

    |

  5. Prove that the area in the first quadrant enclosed by the axis, the ...

    Text Solution

    |

  6. Find the area bounded by the curve x^2=4y and the straight line x=4y-2...

    Text Solution

    |

  7. Find the area of the figure bounded by the parabolas x=-2y^2, x=1-3y^2...

    Text Solution

    |

  8. Find the area bounded by the parabola y=2-x^2 and the straight line y+...

    Text Solution

    |

  9. Calculate the area enclosed by the parabola y^(2)=x+3y and the Y-axis...

    Text Solution

    |

  10. Prove that the area bonded by the parabola y^2=5x+6 and x^2=y is 81/1...

    Text Solution

    |

  11. The area common to the circle x^2 + y^2 = 64 and the parabola y^2 = 12...

    Text Solution

    |

  12. A O B is the positive quadrant of the ellipse (x^2)/(a^2)+(y^2)/(b^...

    Text Solution

    |

  13. Sketch the region bounded by the curves y=x^2a n dy=2/(1+x^2) . Find t...

    Text Solution

    |

  14. Let f(x) be a function defined by f (x)=int1^x x(x^2-3x+2)dx, 1 leq x...

    Text Solution

    |

  15. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  16. Find out the area bounded by the curve y=int(1//8)^(sin^(2)x)(sin^(-1)...

    Text Solution

    |

  17. Evaluate: int(-1/2)^(1/2)[((x+1)/(x-1))^2+((x-1)/(x+1))^2-2]^(1/2)dx

    Text Solution

    |

  18. Let f(x)=ax^(2)+bx + c, where a in R^(+) and b^(2)-4ac lt 0. Area boun...

    Text Solution

    |

  19. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  20. int(-2)^2min(x-[x],-x-[-x])dx equals, where [ x ] represents greatest ...

    Text Solution

    |