Home
Class 12
MATHS
Evaluate : int(0)^(pi//2)sin^(9)x co...

Evaluate :
`int_(0)^(pi//2)sin^(9)x cos^(7)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \sin^9 x \cos^7 x \, dx, \] we will use Wallis's formula, which is particularly useful for integrals of the form \( \int_{0}^{\frac{\pi}{2}} \sin^m x \cos^n x \, dx \) where \( m \) and \( n \) are odd integers. ### Step 1: Identify values of \( m \) and \( n \) In our case, we have: - \( m = 9 \) - \( n = 7 \) ### Step 2: Apply Wallis's formula According to Wallis's formula: \[ \int_{0}^{\frac{\pi}{2}} \sin^m x \cos^n x \, dx = \frac{(n-1)(n-3)(n-5)\ldots}{(m+n)(m+n-2)(m+n-4)\ldots} \] This formula is applicable when both \( m \) and \( n \) are odd. ### Step 3: Calculate the numerator The numerator is given by: \[ (n-1)(n-3)(n-5)\ldots \] For \( n = 7 \): \[ = (7-1)(7-3)(7-5) = 6 \cdot 4 \cdot 2 = 48 \] ### Step 4: Calculate the denominator The denominator is given by: \[ (m+n)(m+n-2)(m+n-4)\ldots \] Here, \( m+n = 9 + 7 = 16 \): \[ = 16 \cdot 14 \cdot 12 \cdot 10 \cdot 8 \cdot 6 \cdot 4 \cdot 2 \] ### Step 5: Simplify the denominator Calculating the denominator step by step: - \( 16 \cdot 14 = 224 \) - \( 224 \cdot 12 = 2688 \) - \( 2688 \cdot 10 = 26880 \) - \( 26880 \cdot 8 = 215040 \) - \( 215040 \cdot 6 = 1290240 \) - \( 1290240 \cdot 4 = 5160960 \) - \( 5160960 \cdot 2 = 10321920 \) So, the denominator is \( 10321920 \). ### Step 6: Write the final result Now substituting the values into Wallis's formula, we get: \[ I = \frac{48}{10321920} \] ### Step 7: Simplify the fraction To simplify \( \frac{48}{10321920} \): \[ I = \frac{1}{214320} \] Thus, the final answer is: \[ I = \frac{1}{560} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(pi//2)sin^(8)xdx

3. int_(0)^( pi/2)sin^(2)x cos^(4)xdx

Evaluate : int_(0)^(pi//2)cos^(9)xdx

int_(0)^(pi) sin^(4) x cos^(2)xdx =

Evaluate int_(0)^(pi//2)lnsin2xdx

Evaluate : int_(0)^(pi//2) sin^(3) x cos x dx

int_(-pi//2)^(pi//2)sin^(5)xcos^(4)xdx

Evaluate: int_0^(pi//2)sin^4xdx

Evaluate : int_0^(pi/2)cos^3xdx

Evaluate: int_(-pi//2)^(pi//2)sin^7x dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Find the area of the region bounded by the curves y=x-1\ a n d\ (y-1)^...

    Text Solution

    |

  2. Evaluate : int(0)^(pi//2)sin^(8)xdx

    Text Solution

    |

  3. Evaluate : int(0)^(pi//2)sin^(9)x cos^(7)xdx

    Text Solution

    |

  4. Evaluate : int(0)^(pi//2)cos^(9)xdx

    Text Solution

    |

  5. Prove that 4le int(1)^(3) sqrt(3+x^(3)) dx le 2sqrt30.

    Text Solution

    |

  6. Let I(1)=int(0)^(pi//4)e^(x^(2))dx, I(2) = int(0)^(pi//4) e^(x)dx, I(3...

    Text Solution

    |

  7. The value of the definite integral int0^1(x\ dx)/ (x^3+16) lies in the...

    Text Solution

    |

  8. The maximum and minimum values of the integral. int0^(pi//2)dx/(1+sin^...

    Text Solution

    |

  9. Let f(a)>0, and let f(x) be a non-decreasing continuous function in [a...

    Text Solution

    |

  10. The mean value of the function f(x)= 2/(e^x+1) in the interval [0,2] i...

    Text Solution

    |

  11. Suppose f, f' and f'' are continuous on [0, e] and that f'(e )= f(e ) ...

    Text Solution

    |

  12. The value of lim(x to oo)(d)/(dx)int(sqrt(3))^(sqrt(x))(r^(3))/((r+1)...

    Text Solution

    |

  13. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  14. Let y = f(x) be a differentiable curve satisfying int(2)^(x)f(t)dt=(x...

    Text Solution

    |

  15. If F(x)=(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(...

    Text Solution

    |

  16. Given f(x) where ={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt...

    Text Solution

    |

  17. If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx ...

    Text Solution

    |

  18. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  19. Evaluate int-1^1 [x[1+sinpix]+1]dx, [.] is the greatest integer funct...

    Text Solution

    |

  20. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |