Home
Class 12
MATHS
Evaluate : int(0)^(pi//2)cos^(9)xdx...

Evaluate :
`int_(0)^(pi//2)cos^(9)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\frac{\pi}{2}} \cos^9 x \, dx \), we can use Wallis's formula for integrals of the form \( \int_{0}^{\frac{\pi}{2}} \cos^n x \, dx \) where \( n \) is an odd integer. ### Step-by-step Solution: 1. **Identify the formula**: Wallis's formula states that for an odd integer \( n \): \[ \int_{0}^{\frac{\pi}{2}} \cos^n x \, dx = \frac{n(n-1)(n-2)\cdots(3)(1)}{n(n-1)(n-2)\cdots(2)(1)} \cdot \frac{\pi}{2} \] 2. **Determine \( n \)**: In our case, \( n = 9 \). 3. **Calculate the numerator**: The numerator is given by: \[ 9 \cdot 7 \cdot 5 \cdot 3 \cdot 1 \] We can compute this step-by-step: - \( 9 \cdot 7 = 63 \) - \( 63 \cdot 5 = 315 \) - \( 315 \cdot 3 = 945 \) - \( 945 \cdot 1 = 945 \) 4. **Calculate the denominator**: The denominator is given by: \[ 8 \cdot 6 \cdot 4 \cdot 2 \] We can compute this step-by-step: - \( 8 \cdot 6 = 48 \) - \( 48 \cdot 4 = 192 \) - \( 192 \cdot 2 = 384 \) 5. **Combine the results**: Now, we can substitute the values into the formula: \[ I = \frac{945}{384} \cdot \frac{\pi}{2} \] 6. **Simplify the expression**: To simplify: \[ I = \frac{945 \cdot \pi}{768} \] 7. **Final answer**: The value of the integral is: \[ I = \frac{945 \pi}{768} \] ### Final Result: Thus, the evaluated integral is: \[ \int_{0}^{\frac{\pi}{2}} \cos^9 x \, dx = \frac{945 \pi}{768} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)sec^(2)xdx

Evaluate int_(0)^(pi//2)cos^(4)xdx

Evaluate: int_(0)^(pi//2) cos2x dx

Evaluate int _(0)^(pi//2)cos x dx

Evaluate : int_(0)^(pi//2)sin^(8)xdx

int_(0)^( pi/4)sec^(2)xdx

Evaluate : int_(0)^(pi//2)sin^(9)x cos^(7)xdx

(1) int_(0)^( 2pi)cos^(7)xdx

int_(0)^( pi/2)x sec^(2)xdx

Evaluate : int_0^(pi/2)cos^3xdx

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Evaluate : int(0)^(pi//2)sin^(8)xdx

    Text Solution

    |

  2. Evaluate : int(0)^(pi//2)sin^(9)x cos^(7)xdx

    Text Solution

    |

  3. Evaluate : int(0)^(pi//2)cos^(9)xdx

    Text Solution

    |

  4. Prove that 4le int(1)^(3) sqrt(3+x^(3)) dx le 2sqrt30.

    Text Solution

    |

  5. Let I(1)=int(0)^(pi//4)e^(x^(2))dx, I(2) = int(0)^(pi//4) e^(x)dx, I(3...

    Text Solution

    |

  6. The value of the definite integral int0^1(x\ dx)/ (x^3+16) lies in the...

    Text Solution

    |

  7. The maximum and minimum values of the integral. int0^(pi//2)dx/(1+sin^...

    Text Solution

    |

  8. Let f(a)>0, and let f(x) be a non-decreasing continuous function in [a...

    Text Solution

    |

  9. The mean value of the function f(x)= 2/(e^x+1) in the interval [0,2] i...

    Text Solution

    |

  10. Suppose f, f' and f'' are continuous on [0, e] and that f'(e )= f(e ) ...

    Text Solution

    |

  11. The value of lim(x to oo)(d)/(dx)int(sqrt(3))^(sqrt(x))(r^(3))/((r+1)...

    Text Solution

    |

  12. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  13. Let y = f(x) be a differentiable curve satisfying int(2)^(x)f(t)dt=(x...

    Text Solution

    |

  14. If F(x)=(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(...

    Text Solution

    |

  15. Given f(x) where ={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt...

    Text Solution

    |

  16. If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx ...

    Text Solution

    |

  17. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  18. Evaluate int-1^1 [x[1+sinpix]+1]dx, [.] is the greatest integer funct...

    Text Solution

    |

  19. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  20. Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)in...

    Text Solution

    |