Home
Class 12
MATHS
Let I(1)=int(0)^(pi//4)e^(x^(2))dx, I(2)...

Let `I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx`, then :

A

`I_(1)gt I_(2)gt I_(3)gt I_(4)`

B

`I_(2)gt I_(3)gt I_(4)gt I_(1)`

C

`I_(3)gt I_(4)gt I_(1)gt I_(2)`

D

`I_(2)gt I_(1)gt I_(3)gt I_(4)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

int_(0)^(pi//4) cos^(2) x dx

int_(0)^(4)(x+e^(2x))dx

I=int_(0)^( pi/2)x^(2)cos^(2)x*dx

Consider I_1=int_0^(pi//4)e^(x^2)dx ,I_2=int_0^(pi//4)e^x dx ,I_3=int_0^(pi//4)e^(x^2)cosxdx , I_4=int_0^(pi//4)e^(x^2)sinxdx . STATEMENT 1 : I_2> I_1> I_3> I_4 STATEMENT 2 : For x in (0,1),x > x^2a n dsinx >cosx .

I_(1)=int_(0)^((pi)/2)Ln (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)Ln(sinx+cosx)dx . Then

int_(0)^(pi//2) (1)/(4+3 cos x)dx

Let I_(1) = int_(0)^(pi/4)x^(2008)(tanx )^(2008)dx, I_(2) = int_(0)^(pi/4) x ^(2009)(tan x)^(2009)dx , I_(3) = int_(0)^(pi/4) x^(2010)(tanx)^(2010)dx then which one of the following inequalities hold good?

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-(1//2)x^(2))dx . The greatest of these integrals, is

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Evaluate : int(0)^(pi//2)cos^(9)xdx

    Text Solution

    |

  2. Prove that 4le int(1)^(3) sqrt(3+x^(3)) dx le 2sqrt30.

    Text Solution

    |

  3. Let I(1)=int(0)^(pi//4)e^(x^(2))dx, I(2) = int(0)^(pi//4) e^(x)dx, I(3...

    Text Solution

    |

  4. The value of the definite integral int0^1(x\ dx)/ (x^3+16) lies in the...

    Text Solution

    |

  5. The maximum and minimum values of the integral. int0^(pi//2)dx/(1+sin^...

    Text Solution

    |

  6. Let f(a)>0, and let f(x) be a non-decreasing continuous function in [a...

    Text Solution

    |

  7. The mean value of the function f(x)= 2/(e^x+1) in the interval [0,2] i...

    Text Solution

    |

  8. Suppose f, f' and f'' are continuous on [0, e] and that f'(e )= f(e ) ...

    Text Solution

    |

  9. The value of lim(x to oo)(d)/(dx)int(sqrt(3))^(sqrt(x))(r^(3))/((r+1)...

    Text Solution

    |

  10. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  11. Let y = f(x) be a differentiable curve satisfying int(2)^(x)f(t)dt=(x...

    Text Solution

    |

  12. If F(x)=(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(...

    Text Solution

    |

  13. Given f(x) where ={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt...

    Text Solution

    |

  14. If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx ...

    Text Solution

    |

  15. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  16. Evaluate int-1^1 [x[1+sinpix]+1]dx, [.] is the greatest integer funct...

    Text Solution

    |

  17. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  18. Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)in...

    Text Solution

    |

  19. The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)...

    Text Solution

    |

  20. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |