Home
Class 12
MATHS
The mean value of the function f(x)= 2/(...

The mean value of the function `f(x)= 2/(e^x+1)` in the interval [0,2] is

A

`log.(2)/(e^(2)+1)`

B

`1+log (2)/(e^(2)+1)`

C

`2+log (2)/(e^(2)+1)`

D

`2+log (e^(2)+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the mean value of the function \( f(x) = \frac{2}{e^x + 1} \) in the interval \([0, 2]\), we will follow these steps: ### Step 1: Write the formula for the mean value of a function The mean value \( M \) of a function \( f(x) \) over the interval \([a, b]\) is given by the formula: \[ M = \frac{1}{b - a} \int_a^b f(x) \, dx \] In our case, \( a = 0 \) and \( b = 2 \). ### Step 2: Substitute the function and limits into the formula Substituting \( f(x) \) and the limits into the formula, we get: \[ M = \frac{1}{2 - 0} \int_0^2 \frac{2}{e^x + 1} \, dx = \int_0^2 \frac{2}{e^x + 1} \, dx \] ### Step 3: Simplify the integral We can simplify the integral: \[ M = 2 \int_0^2 \frac{1}{e^x + 1} \, dx \] ### Step 4: Use substitution to evaluate the integral Let \( t = e^x \). Then, \( dt = e^x \, dx \) or \( dx = \frac{dt}{t} \). Now, we need to change the limits: - When \( x = 0 \), \( t = e^0 = 1 \) - When \( x = 2 \), \( t = e^2 \) Thus, the integral becomes: \[ M = 2 \int_1^{e^2} \frac{1}{t + 1} \cdot \frac{1}{t} \, dt = 2 \int_1^{e^2} \frac{1}{t(t + 1)} \, dt \] ### Step 5: Split the integrand We can use partial fractions to split the integrand: \[ \frac{1}{t(t + 1)} = \frac{A}{t} + \frac{B}{t + 1} \] Multiplying through by \( t(t + 1) \) and solving for \( A \) and \( B \): \[ 1 = A(t + 1) + Bt \] Setting \( t = 0 \) gives \( A = 1 \). Setting \( t = -1 \) gives \( B = -1 \). Thus: \[ \frac{1}{t(t + 1)} = \frac{1}{t} - \frac{1}{t + 1} \] ### Step 6: Integrate Now, we can integrate: \[ M = 2 \left( \int_1^{e^2} \left( \frac{1}{t} - \frac{1}{t + 1} \right) dt \right) \] This gives: \[ M = 2 \left( \left[ \ln t - \ln(t + 1) \right]_1^{e^2} \right) \] Calculating the limits: \[ = 2 \left( \left( \ln(e^2) - \ln(e^2 + 1) \right) - \left( \ln(1) - \ln(2) \right) \right) \] Since \( \ln(1) = 0 \): \[ = 2 \left( 2 - \ln(e^2 + 1) + \ln(2) \right) \] ### Step 7: Final simplification Thus, we have: \[ M = 2 \left( 2 + \ln(2) - \ln(e^2 + 1) \right) = 4 + 2\ln(2) - 2\ln(e^2 + 1) \] Using the property of logarithms: \[ M = 4 + 2\ln\left(\frac{2}{e^2 + 1}\right) \] ### Final Answer The mean value of the function \( f(x) = \frac{2}{e^x + 1} \) in the interval \([0, 2]\) is: \[ M = 4 + 2\ln\left(\frac{2}{e^2 + 1}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of c in Lgrange's Mean Value theorem for the function f(x) =x(x-2) in the interval [1,2] is

The value of c in Lagrange's mean value theorem for the function f(x) = |x| in the interval [-1, 1] is

Verify the Lagrange's mean value theorem for the function : f(x)=x+1/(x) in the interval [1, 3].

Find the least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is ?

Verify Lagrange's Mean value theorem for the function f(x) = x^(2) -1 in the interval [3,5].

Find c of Lagranges mean value theorem for the function f(x)=3x^2+5x+7 in the interval [1,3]dot

Find c of Lagranges mean value theorem for the function f(x)=3x^2+5x+7 in the interval [1,3]dot

The value of c in Lagrange's Mean Value theorem for the function f(x) =x+(1)/(x) in thhe interval [1,3] is

Verify Lagrange's Mean Value Theorem for the function f(x)=sqrt(x^(2)-x) in the interval [1,4] .

Verify Lagrange's mean theorem for the function f(x) =x^(2) + x-1 in the interval [0,4]

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. The maximum and minimum values of the integral. int0^(pi//2)dx/(1+sin^...

    Text Solution

    |

  2. Let f(a)>0, and let f(x) be a non-decreasing continuous function in [a...

    Text Solution

    |

  3. The mean value of the function f(x)= 2/(e^x+1) in the interval [0,2] i...

    Text Solution

    |

  4. Suppose f, f' and f'' are continuous on [0, e] and that f'(e )= f(e ) ...

    Text Solution

    |

  5. The value of lim(x to oo)(d)/(dx)int(sqrt(3))^(sqrt(x))(r^(3))/((r+1)...

    Text Solution

    |

  6. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  7. Let y = f(x) be a differentiable curve satisfying int(2)^(x)f(t)dt=(x...

    Text Solution

    |

  8. If F(x)=(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(...

    Text Solution

    |

  9. Given f(x) where ={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt...

    Text Solution

    |

  10. If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx ...

    Text Solution

    |

  11. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  12. Evaluate int-1^1 [x[1+sinpix]+1]dx, [.] is the greatest integer funct...

    Text Solution

    |

  13. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  14. Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)in...

    Text Solution

    |

  15. The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)...

    Text Solution

    |

  16. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |

  17. Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x...

    Text Solution

    |

  18. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  19. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  20. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |