Home
Class 12
MATHS
Suppose f, f' and f'' are continuous on ...

Suppose f, f' and f'' are continuous on [0, e] and that `f'(e )= f(e ) = f(1) = 1` and `int_(1)^(e )(f(x))/(x^(2))dx=(1)/(2)`, then the value of `int_(1)^(e ) f''(x)ln xdx` equals :

A

0

B

1

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{1}^{e} f''(x) \ln x \, dx \) given the conditions on the function \( f \). We will use integration by parts to simplify the evaluation. ### Step-by-step Solution: 1. **Set Up Integration by Parts**: We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Here, let: - \( u = \ln x \) (therefore, \( du = \frac{1}{x} \, dx \)) - \( dv = f''(x) \, dx \) (therefore, \( v = f'(x) \)) 2. **Apply Integration by Parts**: Applying the integration by parts, we get: \[ \int_{1}^{e} f''(x) \ln x \, dx = \left[ \ln x \cdot f'(x) \right]_{1}^{e} - \int_{1}^{e} f'(x) \cdot \frac{1}{x} \, dx \] 3. **Evaluate the Boundary Terms**: Now, we evaluate the boundary terms: - At \( x = e \): \[ \ln e \cdot f'(e) = 1 \cdot 1 = 1 \] - At \( x = 1 \): \[ \ln 1 \cdot f'(1) = 0 \cdot f'(1) = 0 \] Thus, the boundary term evaluates to: \[ \left[ \ln x \cdot f'(x) \right]_{1}^{e} = 1 - 0 = 1 \] 4. **Evaluate the Remaining Integral**: Now we need to evaluate the integral: \[ - \int_{1}^{e} f'(x) \cdot \frac{1}{x} \, dx \] We can again use integration by parts on this integral. Let: - \( u = f(x) \) (thus, \( du = f'(x) \, dx \)) - \( dv = \frac{1}{x} \, dx \) (thus, \( v = \ln x \)) Applying integration by parts again: \[ \int f'(x) \cdot \frac{1}{x} \, dx = \left[ f(x) \ln x \right]_{1}^{e} - \int f(x) \cdot \frac{1}{x} \, dx \] 5. **Evaluate the Boundary Terms Again**: - At \( x = e \): \[ f(e) \ln e = 1 \cdot 1 = 1 \] - At \( x = 1 \): \[ f(1) \ln 1 = 1 \cdot 0 = 0 \] Thus, the boundary term evaluates to: \[ \left[ f(x) \ln x \right]_{1}^{e} = 1 - 0 = 1 \] 6. **Combine Results**: Now substituting back, we have: \[ -\left( 1 - \int_{1}^{e} f(x) \cdot \frac{1}{x} \, dx \right) \] Therefore: \[ \int_{1}^{e} f'(x) \cdot \frac{1}{x} \, dx = 1 - \int_{1}^{e} f(x) \cdot \frac{1}{x} \, dx \] 7. **Given Condition**: We know from the problem statement: \[ \int_{1}^{e} \frac{f(x)}{x^2} \, dx = \frac{1}{2} \] This implies: \[ \int_{1}^{e} f(x) \cdot \frac{1}{x} \, dx = 2 \cdot \frac{1}{2} = 1 \] 8. **Final Calculation**: Putting everything together: \[ \int_{1}^{e} f''(x) \ln x \, dx = 1 - 1 = 0 \] ### Conclusion: Thus, the value of \( \int_{1}^{e} f''(x) \ln x \, dx \) is **0**.
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If 2f(x)+f(-x)=1/xsin(x-1/x) then the value of int_(1/e)^e f(x)d x is

If x^(f(x))=e^(x-f(x)) , then the value of integral int_(1)^(2)f'(x){(1+logx)^(2)}dx+1 is

If int((x-1)/(x^2))e^x dx=f(x)e^x+c , then write the value of f(x) .

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If int((x-1)/(x^2))e^x\ dx=f(x)\ e^x+C , then write the value of f(x) .

If f(x)=(log)_e((x^2+e)/(x^2+1)) , then the range of f(x)

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

Let f(x)=(e^(x)+1)/(e^(x)-1) and int_(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1) dx= alpha "Then" , int_(-1)^(1) t^(3) f(t) dt is equal to

Suppose f is continuous on [a,b] & f(a)=f(b)=0 & int_(a)^(b)f^(2)(x)dx=1 then the minimum value of int_(a)^(0)(f^(')(x))^(2)dx int_(a)^(b) x^(2)f^(2)(x)dx is k , then 8k is

"If " f(x)=int(dx)/(x^(1//3)+2) " and "f(0)=12log_(e)2, " then the value of " f(-1) " is"-.

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Let f(a)>0, and let f(x) be a non-decreasing continuous function in [a...

    Text Solution

    |

  2. The mean value of the function f(x)= 2/(e^x+1) in the interval [0,2] i...

    Text Solution

    |

  3. Suppose f, f' and f'' are continuous on [0, e] and that f'(e )= f(e ) ...

    Text Solution

    |

  4. The value of lim(x to oo)(d)/(dx)int(sqrt(3))^(sqrt(x))(r^(3))/((r+1)...

    Text Solution

    |

  5. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  6. Let y = f(x) be a differentiable curve satisfying int(2)^(x)f(t)dt=(x...

    Text Solution

    |

  7. If F(x)=(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(...

    Text Solution

    |

  8. Given f(x) where ={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt...

    Text Solution

    |

  9. If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx ...

    Text Solution

    |

  10. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  11. Evaluate int-1^1 [x[1+sinpix]+1]dx, [.] is the greatest integer funct...

    Text Solution

    |

  12. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  13. Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)in...

    Text Solution

    |

  14. The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)...

    Text Solution

    |

  15. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |

  16. Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x...

    Text Solution

    |

  17. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  18. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  19. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |

  20. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |