Home
Class 12
MATHS
The value of lim(x to oo)(d)/(dx)int(sq...

The value of `lim_(x to oo)(d)/(dx)int_(sqrt(3))^(sqrt(x))(r^(3))/((r+1)(r-1))dr` is :

A

0

B

1

C

`(1)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given limit problem, we will follow these steps: ### Step 1: Set Up the Expression We start with the expression we need to evaluate: \[ \lim_{x \to \infty} \frac{d}{dx} \int_{\sqrt{3}}^{\sqrt{x}} \frac{r^3}{(r+1)(r-1)} \, dr \] ### Step 2: Apply the Fundamental Theorem of Calculus According to the Fundamental Theorem of Calculus, we can differentiate the integral: \[ \frac{d}{dx} \int_{a}^{g(x)} f(r) \, dr = f(g(x)) \cdot g'(x) \] where \( g(x) = \sqrt{x} \) and \( a = \sqrt{3} \). Thus, we have: \[ \frac{d}{dx} \int_{\sqrt{3}}^{\sqrt{x}} \frac{r^3}{(r+1)(r-1)} \, dr = \frac{\left(\sqrt{x}\right)^3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)} \cdot \frac{d}{dx}(\sqrt{x}) \] ### Step 3: Compute \( g'(x) \) The derivative of \( g(x) = \sqrt{x} \) is: \[ g'(x) = \frac{1}{2\sqrt{x}} \] ### Step 4: Substitute \( g(x) \) and \( g'(x) \) into the Expression Now substituting back, we get: \[ \frac{d}{dx} \int_{\sqrt{3}}^{\sqrt{x}} \frac{r^3}{(r+1)(r-1)} \, dr = \frac{x^{3/2}}{(\sqrt{x}+1)(\sqrt{x}-1)} \cdot \frac{1}{2\sqrt{x}} \] ### Step 5: Simplify the Expression Simplifying this expression: \[ = \frac{x^{3/2}}{(\sqrt{x}+1)(\sqrt{x}-1)} \cdot \frac{1}{2\sqrt{x}} = \frac{x^{3/2}}{2\sqrt{x}((\sqrt{x}+1)(\sqrt{x}-1))} = \frac{x^{3/2}}{2\sqrt{x}(x-1)} = \frac{x}{2(x-1)} \] ### Step 6: Evaluate the Limit Now we need to evaluate the limit: \[ \lim_{x \to \infty} \frac{x}{2(x-1)} \] This simplifies to: \[ = \lim_{x \to \infty} \frac{x}{2x - 2} = \lim_{x \to \infty} \frac{1}{2 - \frac{2}{x}} = \frac{1}{2} \] ### Final Answer Thus, the value of the limit is: \[ \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_(x to oo) (sqrt(x + 1) - sqrt(x)) equals

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)) , is

Evaluate : lim_(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. The mean value of the function f(x)= 2/(e^x+1) in the interval [0,2] i...

    Text Solution

    |

  2. Suppose f, f' and f'' are continuous on [0, e] and that f'(e )= f(e ) ...

    Text Solution

    |

  3. The value of lim(x to oo)(d)/(dx)int(sqrt(3))^(sqrt(x))(r^(3))/((r+1)...

    Text Solution

    |

  4. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  5. Let y = f(x) be a differentiable curve satisfying int(2)^(x)f(t)dt=(x...

    Text Solution

    |

  6. If F(x)=(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(...

    Text Solution

    |

  7. Given f(x) where ={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt...

    Text Solution

    |

  8. If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx ...

    Text Solution

    |

  9. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  10. Evaluate int-1^1 [x[1+sinpix]+1]dx, [.] is the greatest integer funct...

    Text Solution

    |

  11. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  12. Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)in...

    Text Solution

    |

  13. The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)...

    Text Solution

    |

  14. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |

  15. Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x...

    Text Solution

    |

  16. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  17. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  18. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |

  19. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  20. Evaluate: int0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[do...

    Text Solution

    |