Home
Class 12
MATHS
Let y = f(x) be a differentiable curve s...

Let `y = f(x)` be a differentiable curve satisfying `int_(2)^(x)f(t)dt=(x^(2))/(2)+int_(x)^(2)t^(2)f(t)dt`, then `int_(-pi//4)^(pi//4)(f(x)+x^(9)-x^(3)+x+1)/(cos^(2)x)dx` equals :

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first analyze the given equation and find the function \( f(x) \). ### Step 1: Analyze the given equation We have the equation: \[ \int_{2}^{x} f(t) dt = \frac{x^2}{2} + \int_{x}^{2} t^2 f(t) dt \] This equation relates the integral of \( f(t) \) from 2 to \( x \) with a quadratic term and another integral. ### Step 2: Differentiate both sides with respect to \( x \) Using the Fundamental Theorem of Calculus and Leibniz's rule, we differentiate both sides: \[ \frac{d}{dx} \left( \int_{2}^{x} f(t) dt \right) = f(x) \] For the right side: \[ \frac{d}{dx} \left( \frac{x^2}{2} \right) + \frac{d}{dx} \left( \int_{x}^{2} t^2 f(t) dt \right) \] Using Leibniz's rule on the second term: \[ \frac{d}{dx} \left( \int_{x}^{2} t^2 f(t) dt \right) = -x^2 f(x) \] Thus, we have: \[ f(x) = x + 0 - x^2 f(x) \] This simplifies to: \[ f(x) + x^2 f(x) = x \] ### Step 3: Solve for \( f(x) \) Factoring out \( f(x) \): \[ f(x)(1 + x^2) = x \] Therefore, \[ f(x) = \frac{x}{1 + x^2} \] ### Step 4: Set up the integral to evaluate Now we need to evaluate: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(x) + x^9 - x^3 + x + 1}{\cos^2 x} dx \] Substituting \( f(x) \): \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\frac{x}{1 + x^2} + x^9 - x^3 + x + 1}{\cos^2 x} dx \] ### Step 5: Identify odd and even functions We analyze the integrand: 1. \( \frac{x}{1 + x^2} \) is an odd function. 2. \( x^9 \) is an odd function. 3. \( -x^3 \) is an odd function. 4. \( x \) is an odd function. 5. \( 1 \) is an even function. Combining these, the sum of the odd functions results in an odd function, while the even function remains unchanged. ### Step 6: Evaluate the integral Since the integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left( \frac{x}{1 + x^2} + x^9 - x^3 + x \right) \frac{1}{\cos^2 x} dx = 0 \] Thus, we only need to evaluate: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} dx \] This is: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec^2 x \, dx \] ### Step 7: Calculate the integral of \( \sec^2 x \) The integral of \( \sec^2 x \) is: \[ \int \sec^2 x \, dx = \tan x \] Evaluating from \( -\frac{\pi}{4} \) to \( \frac{\pi}{4} \): \[ I = \tan\left(\frac{\pi}{4}\right) - \tan\left(-\frac{\pi}{4}\right) = 1 - (-1) = 2 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of int_(-2)^(2)f(x)dx is

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. The value of lim(x to oo)(d)/(dx)int(sqrt(3))^(sqrt(x))(r^(3))/((r+1)...

    Text Solution

    |

  2. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  3. Let y = f(x) be a differentiable curve satisfying int(2)^(x)f(t)dt=(x...

    Text Solution

    |

  4. If F(x)=(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(...

    Text Solution

    |

  5. Given f(x) where ={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt...

    Text Solution

    |

  6. If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx ...

    Text Solution

    |

  7. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  8. Evaluate int-1^1 [x[1+sinpix]+1]dx, [.] is the greatest integer funct...

    Text Solution

    |

  9. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  10. Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)in...

    Text Solution

    |

  11. The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)...

    Text Solution

    |

  12. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |

  13. Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x...

    Text Solution

    |

  14. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  15. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  16. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |

  17. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  18. Evaluate: int0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[do...

    Text Solution

    |

  19. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  20. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |