Home
Class 12
MATHS
If F(x)=(1)/(x^(2))overset(x)underset(4)...

If F(x)`=(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt` then F'(4) equals

A

`(15)/(9)`

B

`(32)/(9)`

C

`(37)/(9)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( F'(4) \) given that \[ F(x) = \frac{1}{x^2} \int_4^x \left( 4t^2 - 2F'(t) \right) dt. \] ### Step 1: Differentiate \( F(x) \) We start by differentiating both sides with respect to \( x \): \[ F'(x) = \frac{d}{dx} \left( \frac{1}{x^2} \int_4^x \left( 4t^2 - 2F'(t) \right) dt \right). \] ### Step 2: Apply the Product Rule Using the product rule, where \( u = \frac{1}{x^2} \) and \( v = \int_4^x \left( 4t^2 - 2F'(t) \right) dt \): \[ F'(x) = u'v + uv'. \] ### Step 3: Calculate \( u' \) and \( v' \) 1. **Calculate \( u' \)**: \[ u' = \frac{d}{dx} \left( \frac{1}{x^2} \right) = -\frac{2}{x^3}. \] 2. **Calculate \( v' \)** using the Leibniz rule: \[ v' = 4x^2 - 2F'(x). \] ### Step 4: Substitute \( u' \) and \( v' \) into the equation Now substituting \( u' \) and \( v' \) back into the equation for \( F'(x) \): \[ F'(x) = -\frac{2}{x^3} \int_4^x \left( 4t^2 - 2F'(t) \right) dt + \frac{1}{x^2} \left( 4x^2 - 2F'(x) \right). \] ### Step 5: Simplify the expression This simplifies to: \[ F'(x) = -\frac{2}{x^3} \int_4^x \left( 4t^2 - 2F'(t) \right) dt + \frac{4}{x^2} - \frac{2F'(x)}{x^2}. \] ### Step 6: Evaluate at \( x = 4 \) Now we substitute \( x = 4 \): \[ F'(4) = -\frac{2}{4^3} \int_4^4 \left( 4t^2 - 2F'(t) \right) dt + \frac{4}{4^2} - \frac{2F'(4)}{4^2}. \] Since the integral from 4 to 4 is zero, we have: \[ F'(4) = 0 + 1 - \frac{2F'(4)}{16}. \] ### Step 7: Solve for \( F'(4) \) This gives us: \[ F'(4) + \frac{2F'(4)}{16} = 1. \] Multiplying through by 16 to eliminate the fraction: \[ 16F'(4) + 2F'(4) = 16. \] This simplifies to: \[ 18F'(4) = 16. \] Thus, \[ F'(4) = \frac{16}{18} = \frac{8}{9}. \] ### Step 8: Final Answer The final answer is: \[ F'(4) = \frac{8}{9}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=overset(x)underset(0)int(sint)/(t)dt,xgt0, then

Let f (x) =(1)/(x ^(2)) int _(4)^(x) (4t ^(2) -2 f '(t) dt, find 9f'(4)

If y = underset(u(x))overset(v(x))intf(t) dt , let us define (dy)/(dx) in a different manner as (dy)/(dx) = v'(x) f^(2)(v(x)) - u'(x) f^(2)(u(x)) alnd the equation of the tangent at (a,b) as y -b = (dy/dx)_((a,b)) (x-a) If F(x) = underset(1)overset(x)inte^(t^(2)//2)(1-t^(2))dt , then d/(dx) F(x) at x = 1 is

If a function y=f(x) such that f'(x) is continuous function and satisfies (f(x))^(2)=k+underset(0)overset(x)int [{f(t)}^(2)+{f'(t)}^(2)]dt,k in R^(+) , then find f(x)

underset(x to oo)lim(overset(2x)underset(0)intte^(t^(2))dt)/(e^(4x^(2))) equals

Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int_(1)^(x) (log t)/(1+t) dt Then F (e) equals

Let f(x)=1/x^2 int_4^x (4t^2-2f'(t))dt then find 9f'(4)

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

Let f:(0,1) in (0,1) be a differenttiable function such that f(x)ne 0 for all x in (0,1) and f((1)/(2))=(sqrt(3))/(2) . Suppose for all x, underset(x to x)lim(overset(1)underset(0)int sqrt(1(f(s))^(2))dxoverset(x)underset(0)int sqrt(1(f(s))^(2))ds)/(f(t)-f(x))=f(x) Then, the value of f((1)/(4)) belongs to

If f(x)=int_0^x tf(t)dt+2, then

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. If a, b and c are real numbers, then the value of underset(trarr0)(lim...

    Text Solution

    |

  2. Let y = f(x) be a differentiable curve satisfying int(2)^(x)f(t)dt=(x...

    Text Solution

    |

  3. If F(x)=(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(...

    Text Solution

    |

  4. Given f(x) where ={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt...

    Text Solution

    |

  5. If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx ...

    Text Solution

    |

  6. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  7. Evaluate int-1^1 [x[1+sinpix]+1]dx, [.] is the greatest integer funct...

    Text Solution

    |

  8. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  9. Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)in...

    Text Solution

    |

  10. The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)...

    Text Solution

    |

  11. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |

  12. Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x...

    Text Solution

    |

  13. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  14. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  15. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |

  16. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  17. Evaluate: int0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[do...

    Text Solution

    |

  18. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  19. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  20. Consider the integrals I(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx...

    Text Solution

    |