Home
Class 12
MATHS
Given f(x) where ={(x|x|,"for" xle -...

Given f(x) where
`={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt 1 ","),(-x|x|,"for" xge1):}` [.] denotes the greatest integer function. If `I= int_(-2)^(2) f ( x) dx`,then |3I| =

A

`8

B

`-4//3`

C

`8//3`

D

`4//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \int_{-2}^{2} f(x) \, dx \) where the function \( f(x) \) is defined piecewise. Let's break down the solution step by step. ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is given as: - \( f(x) = x |x| \) for \( x \leq -1 \) - \( f(x) = [x + 1] + [1 - x] \) for \( -1 < x < 1 \) - \( f(x) = -x |x| \) for \( x \geq 1 \) Here, \([.]\) denotes the greatest integer function. ### Step 2: Break the integral into parts We can split the integral into three parts based on the definition of \( f(x) \): \[ I = \int_{-2}^{-1} f(x) \, dx + \int_{-1}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx \] ### Step 3: Evaluate each part of the integral 1. **For \( x \in [-2, -1] \)**: \[ f(x) = x |x| = x(-x) = -x^2 \] So, \[ \int_{-2}^{-1} f(x) \, dx = \int_{-2}^{-1} -x^2 \, dx \] Evaluating this integral: \[ = -\left[ \frac{x^3}{3} \right]_{-2}^{-1} = -\left( \frac{(-1)^3}{3} - \frac{(-2)^3}{3} \right) = -\left( -\frac{1}{3} + \frac{8}{3} \right) = -\left( \frac{7}{3} \right) = \frac{7}{3} \] 2. **For \( x \in [-1, 1] \)**: We need to evaluate \( f(x) = [x + 1] + [1 - x] \). - For \( -1 < x < 0 \): \( [x + 1] = 0 \) and \( [1 - x] = 1 \) (since \( 1 - x > 1 \)). - For \( 0 < x < 1 \): \( [x + 1] = 1 \) and \( [1 - x] = 1 \). Therefore, we can compute: \[ \int_{-1}^{0} f(x) \, dx = \int_{-1}^{0} 1 \, dx = [x]_{-1}^{0} = 0 - (-1) = 1 \] \[ \int_{0}^{1} f(x) \, dx = \int_{0}^{1} 2 \, dx = [2x]_{0}^{1} = 2 - 0 = 2 \] Thus, \[ \int_{-1}^{1} f(x) \, dx = 1 + 2 = 3 \] 3. **For \( x \in [1, 2] \)**: \[ f(x) = -x |x| = -x^2 \] So, \[ \int_{1}^{2} f(x) \, dx = \int_{1}^{2} -x^2 \, dx = -\left[ \frac{x^3}{3} \right]_{1}^{2} = -\left( \frac{8}{3} - \frac{1}{3} \right) = -\left( \frac{7}{3} \right) = \frac{7}{3} \] ### Step 4: Combine the results Now we can combine the results of the three integrals: \[ I = \frac{7}{3} + 3 + \frac{7}{3} = \frac{7}{3} + \frac{9}{3} + \frac{7}{3} = \frac{23}{3} \] ### Step 5: Calculate \( |3I| \) Now, we need to find \( |3I| \): \[ |3I| = |3 \cdot \frac{23}{3}| = |23| = 23 \] ### Final Answer Thus, the final answer is: \[ \boxed{23} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):} , where [x] denotes the greatest integer function, then

Let f(x) = 1 + |x|,x = -1, where [*] denotes the greatest integer function.Then f { f (- 2.3)} is equal to

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Let y = f(x) be a differentiable curve satisfying int(2)^(x)f(t)dt=(x...

    Text Solution

    |

  2. If F(x)=(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(...

    Text Solution

    |

  3. Given f(x) where ={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt...

    Text Solution

    |

  4. If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx ...

    Text Solution

    |

  5. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  6. Evaluate int-1^1 [x[1+sinpix]+1]dx, [.] is the greatest integer funct...

    Text Solution

    |

  7. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  8. Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)in...

    Text Solution

    |

  9. The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)...

    Text Solution

    |

  10. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |

  11. Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x...

    Text Solution

    |

  12. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  13. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  14. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |

  15. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  16. Evaluate: int0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[do...

    Text Solution

    |

  17. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  18. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  19. Consider the integrals I(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx...

    Text Solution

    |

  20. Given overset(2)underset(1)inte^(x^(2))dx=a, the value of overset(e^(4...

    Text Solution

    |