Home
Class 12
MATHS
If I=underset (0)overset(1) int cos{ 2 "...

If `I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx` then

A

`I gt (1)/(2)`

B

`I = -(1)/(2)`

C

`0 lt I lt (1)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \cos\left(2 \cot^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right) dx \), we will follow these steps: ### Step 1: Simplify the expression inside the cosine We start by rewriting the argument of the cosine function. We know that: \[ \cot^{-1}(y) = \frac{\pi}{2} - \tan^{-1}(y) \] Thus, we can express \( \cot^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right) \) in terms of \( \tan^{-1} \). ### Step 2: Substitute \( x = \cos(2\theta) \) Let \( x = \cos(2\theta) \). Then: \[ 1 - x = 1 - \cos(2\theta) = 2\sin^2(\theta) \] \[ 1 + x = 1 + \cos(2\theta) = 2\cos^2(\theta) \] So, we have: \[ \sqrt{\frac{1-x}{1+x}} = \sqrt{\frac{2\sin^2(\theta)}{2\cos^2(\theta)}} = \tan(\theta) \] Thus, we can rewrite the integral as: \[ I = \int_0^1 \cos(2 \cot^{-1}(\tan(\theta))) dx \] ### Step 3: Use the cotangent identity Using the identity \( \cot^{-1}(\tan(\theta)) = \frac{\pi}{2} - \theta \), we have: \[ I = \int_0^1 \cos(2(\frac{\pi}{2} - \theta)) dx = \int_0^1 \cos(\pi - 2\theta) dx \] Using the property \( \cos(\pi - x) = -\cos(x) \): \[ I = -\int_0^1 \cos(2\theta) dx \] ### Step 4: Change of variable Now, we need to express \( dx \) in terms of \( d\theta \). From \( x = \cos(2\theta) \), we differentiate: \[ dx = -2\sin(2\theta) d\theta \] The limits change as follows: - When \( x = 0 \), \( \theta = \frac{\pi}{4} \) - When \( x = 1 \), \( \theta = 0 \) Thus, the integral becomes: \[ I = -\int_{\frac{\pi}{4}}^0 \cos(2\theta)(-2\sin(2\theta)) d\theta = 2\int_0^{\frac{\pi}{4}} \cos(2\theta)\sin(2\theta) d\theta \] ### Step 5: Use the double angle identity Using the identity \( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \), we have: \[ \cos(2\theta)\sin(2\theta) = \frac{1}{2} \sin(4\theta) \] Thus, the integral simplifies to: \[ I = \int_0^{\frac{\pi}{4}} \sin(4\theta) d\theta \] ### Step 6: Evaluate the integral The integral of \( \sin(4\theta) \) is: \[ -\frac{1}{4}\cos(4\theta) \bigg|_0^{\frac{\pi}{4}} = -\frac{1}{4} \left( \cos(\pi) - \cos(0) \right) = -\frac{1}{4}(-1 - 1) = \frac{1}{2} \] ### Final Result Thus, we conclude that: \[ I = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int_0^1 sqrt((1-x)/(1+x)) dx

The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^(2))dx , is

Evaluate: int cos^(-1) sqrt((x)/(x+1))dx

int(1)/(sqrt(1+cos x))dx

int(1)/(sqrt(1+cos 2x))dx

If I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)=underset(0)overset(oo)int x^(2)(dx)/(1+x^(4))"then"n (I_(1))/(I_(2))=

If I= underset(1)overset(2)(int)log_(11)(x^3 - x^2 + 6x -5) dx, then: A. 0 lt I lt 1/2 B. -1ltIlt1/2 C. -1ltIlt0 D. 0lt Ilt 1

int(sqrt(1-x^(2))+1)/(sqrt(1-x)+1/sqrt(1+x))dx

Show that (i) (1)/(10sqrt(2))lt underset(0)overset(1)int(x^(9))/(sqrt(1+x))dx lt 1/10 , (ii) 1/2 ln 2 lt int_(0)^(1)(tanx)/(1+x^(2))dx lt (pi)/(2)

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n) (a) underset(0)overset(1)intx^(n-1)(1+x)^(n)dx (b) underset(1)overset(2)intx^(n)(x-1)^(n-1)dx (c) underset(1)overset(2)int(1+x)^(n)dx (d) underset(0)overset(1)int(1-x)^(n)x^(n-1)dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. If F(x)=(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(...

    Text Solution

    |

  2. Given f(x) where ={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt...

    Text Solution

    |

  3. If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx ...

    Text Solution

    |

  4. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  5. Evaluate int-1^1 [x[1+sinpix]+1]dx, [.] is the greatest integer funct...

    Text Solution

    |

  6. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  7. Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)in...

    Text Solution

    |

  8. The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)...

    Text Solution

    |

  9. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |

  10. Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x...

    Text Solution

    |

  11. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  12. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  13. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |

  14. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  15. Evaluate: int0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[do...

    Text Solution

    |

  16. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  17. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  18. Consider the integrals I(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx...

    Text Solution

    |

  19. Given overset(2)underset(1)inte^(x^(2))dx=a, the value of overset(e^(4...

    Text Solution

    |

  20. The area bounded by the curve y=[x^2/64+2],y=x-1,y=x-1 and x=0 above t...

    Text Solution

    |