Home
Class 12
MATHS
Evaluate int-1^1 [x[1+sinpix]+1]dx, [.]...

Evaluate `int_-1^1 [x[1+sinpix]+1]dx`, [.] is the greatest integer function.

A

2

B

0

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{-1}^{1} \left\lfloor x(1 + \sin(\pi x)) + 1 \right\rfloor \, dx, \] where \(\lfloor . \rfloor\) is the greatest integer function, we can break this integral into two parts: from \(-1\) to \(0\) and from \(0\) to \(1\). ### Step 1: Split the Integral We can write the integral as: \[ I = \int_{-1}^{0} \left\lfloor x(1 + \sin(\pi x)) + 1 \right\rfloor \, dx + \int_{0}^{1} \left\lfloor x(1 + \sin(\pi x)) + 1 \right\rfloor \, dx. \] ### Step 2: Evaluate the Integral from \(-1\) to \(0\) For \(x\) in the interval \([-1, 0]\): - The sine function \(\sin(\pi x)\) varies from \(-1\) to \(0\). - Therefore, \(1 + \sin(\pi x)\) varies from \(0\) to \(1\). - Thus, \(x(1 + \sin(\pi x))\) will be between \(0\) and \(x\) (which is negative). - Therefore, \(x(1 + \sin(\pi x)) + 1\) will be between \(1\) and \(1 + x\) (which is between \(0\) and \(1\)). - The greatest integer function \(\lfloor x(1 + \sin(\pi x)) + 1 \rfloor\) will be \(0\) in this interval. So, \[ \int_{-1}^{0} \left\lfloor x(1 + \sin(\pi x)) + 1 \right\rfloor \, dx = \int_{-1}^{0} 0 \, dx = 0. \] ### Step 3: Evaluate the Integral from \(0\) to \(1\) For \(x\) in the interval \([0, 1]\): - The sine function \(\sin(\pi x)\) varies from \(0\) to \(1\). - Therefore, \(1 + \sin(\pi x)\) varies from \(1\) to \(2\). - Thus, \(x(1 + \sin(\pi x))\) will be between \(0\) and \(2\). - Therefore, \(x(1 + \sin(\pi x)) + 1\) will be between \(1\) and \(3\). - The greatest integer function \(\lfloor x(1 + \sin(\pi x)) + 1 \rfloor\) will be \(1\) in this interval. So, \[ \int_{0}^{1} \left\lfloor x(1 + \sin(\pi x)) + 1 \right\rfloor \, dx = \int_{0}^{1} 1 \, dx = 1. \] ### Step 4: Combine the Results Now we can combine the results from both intervals: \[ I = 0 + 1 = 1. \] ### Final Answer Thus, the value of the integral is \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_-1^1 |x|dx

The value of int_-1^1 [x[1+sinpix]+1]dx where [.] is greatest integer factor, is (A) 3 (B) 2 (C) 8 (D) 1

Evaluate int_-1^1 e^|x|dx

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of int_(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes greatest integer function is

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

The value of int_(-2)^1[x[1+cos((pix)/2)]+1]dx , where [.] denotes the greatest integer function, is (a)1 (b) 1//2 (c) 2 (d) none of these

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx ...

    Text Solution

    |

  2. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  3. Evaluate int-1^1 [x[1+sinpix]+1]dx, [.] is the greatest integer funct...

    Text Solution

    |

  4. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  5. Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)in...

    Text Solution

    |

  6. The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)...

    Text Solution

    |

  7. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |

  8. Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x...

    Text Solution

    |

  9. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  10. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  11. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |

  12. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  13. Evaluate: int0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[do...

    Text Solution

    |

  14. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  15. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  16. Consider the integrals I(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx...

    Text Solution

    |

  17. Given overset(2)underset(1)inte^(x^(2))dx=a, the value of overset(e^(4...

    Text Solution

    |

  18. The area bounded by the curve y=[x^2/64+2],y=x-1,y=x-1 and x=0 above t...

    Text Solution

    |

  19. Area enclosed by the curve (y-sin^(- 1)x)^2=x-x^2, is (A) pi/2 sq...

    Text Solution

    |

  20. Area of the region which consists of all the points satisfying the con...

    Text Solution

    |