Home
Class 12
MATHS
Let overset(a)underset(0)int f(x)dx=lamb...

Let `overset(a)underset(0)int f(x)dx=lambda` and `overset(a)underset(0)int f(2a-x)dx=mu`. Then,
`overset(2a)underset(0)int f(x) dx` equal to

A

`lambda + mu`

B

`lambda - mu`

C

`2lambda - mu`

D

`lambda 2 mu`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \(\int_0^{2a} f(x) \, dx\) given the conditions: 1. \(\int_0^a f(x) \, dx = \lambda\) 2. \(\int_0^a f(2a - x) \, dx = \mu\) ### Step-by-Step Solution: **Step 1: Break down the integral from 0 to 2a** We can express the integral from 0 to \(2a\) as the sum of two integrals: \[ \int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_a^{2a} f(x) \, dx \] **Step 2: Change of variable for the second integral** For the second integral, we will perform a change of variable. Let \(x = 2a - u\). Then when \(x = a\), \(u = a\) and when \(x = 2a\), \(u = 0\). Thus, we have: \[ \int_a^{2a} f(x) \, dx = \int_a^0 f(2a - u) \, (-du) = \int_0^a f(2a - u) \, du \] This simplifies to: \[ \int_a^{2a} f(x) \, dx = \int_0^a f(2a - x) \, dx \] **Step 3: Substitute known values** From the problem, we know: \[ \int_0^a f(x) \, dx = \lambda \] and \[ \int_0^a f(2a - x) \, dx = \mu \] Thus, we can substitute these values into our expression: \[ \int_0^{2a} f(x) \, dx = \lambda + \mu \] **Final Result:** Therefore, the value of \(\int_0^{2a} f(x) \, dx\) is: \[ \int_0^{2a} f(x) \, dx = \lambda + \mu \] ### Conclusion: The final answer is \(\lambda + \mu\). ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If overset(4)underset(-1)int f(x)=4 and overset(4)underset(2)int (3-f(x))dx=7 , then the value of overset(-1)underset(2)int f(x)dx , is

If f(x)=f(a+b-x) , then overset(b)underset(a)int xf(x)dx is equal to

overset(pi)underset(0)int (1)/(1+3^(cosx)) dx is equal to

If I_(1)=overset(1)underset(0)int 2^(x^(2)) dx, I_(2)=overset(1)underset(0)int 2^(x^(3)) dx, I_(3)=overset(2)underset(1)int 2^(x^(2))dx and I_(4)=overset(2)underset(1)int 2^(x^(3))dx then

The integral underset(1)overset(5)int x^(2)dx is equal to

If I=overset(1)underset(0)int (1)/(1+x^(pi//2))dx then

If {x} denotes the fractional part of x, then overset(2)underset(0)int{x} dx is equal to

Consider the integrals I_(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx,I_(2)=overset(1)underset(0)int e^(-x^(2))cos^(2)x dx,I_(3)=overset(1)underset(0)int e^(-x^(2//2))cos^(2)xdx and I_(4)=overset(1)underset(0)int e^(-x^(2//2))dx . The greatest of these integrals, is

The value of overset([x])underset(0)int (x-[x])dx ,where [x] is the greatest integer of x is equal to

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Evaluate int-1^1 [x[1+sinpix]+1]dx, [.] is the greatest integer funct...

    Text Solution

    |

  2. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  3. Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)in...

    Text Solution

    |

  4. The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)...

    Text Solution

    |

  5. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |

  6. Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x...

    Text Solution

    |

  7. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  8. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  9. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |

  10. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  11. Evaluate: int0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[do...

    Text Solution

    |

  12. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  13. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  14. Consider the integrals I(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx...

    Text Solution

    |

  15. Given overset(2)underset(1)inte^(x^(2))dx=a, the value of overset(e^(4...

    Text Solution

    |

  16. The area bounded by the curve y=[x^2/64+2],y=x-1,y=x-1 and x=0 above t...

    Text Solution

    |

  17. Area enclosed by the curve (y-sin^(- 1)x)^2=x-x^2, is (A) pi/2 sq...

    Text Solution

    |

  18. Area of the region which consists of all the points satisfying the con...

    Text Solution

    |

  19. A point P(x,y) moves such that [x+y+1]=[x]. Where [.] denotes greatest...

    Text Solution

    |

  20. Two lines drawn through the point P (4, 0) divide the area bounded by ...

    Text Solution

    |