Home
Class 12
MATHS
The value of the integral int0^pi(x^2sin...

The value of the integral `int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx`

A

`(pi^(2))/(4)`

B

`(pi^(2))/(2)`

C

`(pi^(2))/(6)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^\pi \frac{x^2 \sin x}{(2x - \pi)(1 + \cos^2 x)} \, dx, \] we will use the property of definite integrals that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx. \] ### Step 1: Apply the property of definite integrals Let’s substitute \( x \) with \( \pi - x \): \[ I = \int_0^\pi \frac{(\pi - x)^2 \sin(\pi - x)}{(2(\pi - x) - \pi)(1 + \cos^2(\pi - x))} \, dx. \] ### Step 2: Simplify the expression Using the identities \( \sin(\pi - x) = \sin x \) and \( \cos(\pi - x) = -\cos x \): \[ I = \int_0^\pi \frac{(\pi - x)^2 \sin x}{(2\pi - 2x - \pi)(1 + \cos^2 x)} \, dx, \] which simplifies to: \[ I = \int_0^\pi \frac{(\pi - x)^2 \sin x}{(\pi - 2x)(1 + \cos^2 x)} \, dx. \] ### Step 3: Expand the numerator Now, expand \((\pi - x)^2\): \[ (\pi - x)^2 = \pi^2 - 2\pi x + x^2. \] Thus, we can rewrite the integral as: \[ I = \int_0^\pi \frac{\pi^2 \sin x - 2\pi x \sin x + x^2 \sin x}{(\pi - 2x)(1 + \cos^2 x)} \, dx. \] ### Step 4: Split the integral Now we can split \( I \) into three separate integrals: \[ I = \int_0^\pi \frac{\pi^2 \sin x}{(\pi - 2x)(1 + \cos^2 x)} \, dx - 2\pi \int_0^\pi \frac{x \sin x}{(\pi - 2x)(1 + \cos^2 x)} \, dx + \int_0^\pi \frac{x^2 \sin x}{(\pi - 2x)(1 + \cos^2 x)} \, dx. \] ### Step 5: Combine the integrals Notice that the second integral can be rewritten in terms of \( I \): \[ I = \int_0^\pi \frac{\pi^2 \sin x}{(\pi - 2x)(1 + \cos^2 x)} \, dx - 2\pi \int_0^\pi \frac{x \sin x}{(\pi - 2x)(1 + \cos^2 x)} \, dx + I. \] ### Step 6: Solve for \( I \) Rearranging gives: \[ 0 = \int_0^\pi \frac{\pi^2 \sin x}{(\pi - 2x)(1 + \cos^2 x)} \, dx - 2\pi \int_0^\pi \frac{x \sin x}{(\pi - 2x)(1 + \cos^2 x)} \, dx. \] ### Step 7: Evaluate the integrals Let’s denote: \[ J = \int_0^\pi \frac{\sin x}{1 + \cos^2 x} \, dx. \] Then we can express \( I \) in terms of \( J \): \[ 2I = \pi J. \] ### Step 8: Final calculation Now, we can evaluate \( J \): Using the substitution \( t = \cos x \), we find: \[ J = \int_1^{-1} \frac{-dt}{1 + t^2} = \int_{-1}^{1} \frac{dt}{1 + t^2} = 2 \tan^{-1}(1) = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2}. \] Thus, \[ 2I = \pi \cdot \frac{\pi}{2} \implies I = \frac{\pi^2}{4}. \] ### Conclusion The value of the integral is \[ \boxed{\frac{\pi^2}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

Evaluate the integrals int0pi/2(sinx)/(1+cos^2x)dx

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of the integral int_(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

The value of the integral int_(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1) , is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

Evaluate: int_0^pi(xsinx)/(1+cos^2x)\ dx

Evaluate: int_0^pi(xsinx)/(1+cos^2x)\ dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)in...

    Text Solution

    |

  2. The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)...

    Text Solution

    |

  3. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |

  4. Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x...

    Text Solution

    |

  5. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  6. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  7. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |

  8. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  9. Evaluate: int0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[do...

    Text Solution

    |

  10. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  11. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  12. Consider the integrals I(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx...

    Text Solution

    |

  13. Given overset(2)underset(1)inte^(x^(2))dx=a, the value of overset(e^(4...

    Text Solution

    |

  14. The area bounded by the curve y=[x^2/64+2],y=x-1,y=x-1 and x=0 above t...

    Text Solution

    |

  15. Area enclosed by the curve (y-sin^(- 1)x)^2=x-x^2, is (A) pi/2 sq...

    Text Solution

    |

  16. Area of the region which consists of all the points satisfying the con...

    Text Solution

    |

  17. A point P(x,y) moves such that [x+y+1]=[x]. Where [.] denotes greatest...

    Text Solution

    |

  18. Two lines drawn through the point P (4, 0) divide the area bounded by ...

    Text Solution

    |

  19. The area of the smaller region in which the curve y=[(x^(3))/(100)+(x...

    Text Solution

    |

  20. Consider a rectangle ABCD formed by the points A=(0,0), B= (6, 0), C =...

    Text Solution

    |