Home
Class 12
MATHS
Let f : R->R be given by f(x) = {|x-[x]...

Let `f : R->R` be given by `f(x) = {|x-[x]|`, when [x] is odd and `|x-[x]-1|` , when [x] is even ,where [.] denotes the greatest integer function , then `int_-2^4 f(x) dx` is equal to (a) `(5)/(2)` (b) `(3)/(2)` (c) `5` (d) `3`

A

`(5)/(2)`

B

`(3)/(2)`

C

5

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-2}^{4} f(x) \, dx \) where the function \( f(x) \) is defined piecewise based on the greatest integer function \( [x] \), we need to analyze the function over the intervals determined by the integer values from \(-2\) to \(4\). ### Step 1: Determine the intervals and the function definition The greatest integer function \( [x] \) takes on integer values, and we will evaluate \( f(x) \) in the following intervals: - From \(-2\) to \(-1\) (where \( [x] = -2 \), which is even) - From \(-1\) to \(0\) (where \( [x] = -1 \), which is odd) - From \(0\) to \(1\) (where \( [x] = 0 \), which is even) - From \(1\) to \(2\) (where \( [x] = 1 \), which is odd) - From \(2\) to \(3\) (where \( [x] = 2 \), which is even) - From \(3\) to \(4\) (where \( [x] = 3 \), which is odd) ### Step 2: Define \( f(x) \) in each interval 1. For \( -2 \leq x < -1 \) (where \( [x] = -2 \)): \[ f(x) = |x - (-2)| = |x + 2| \] This simplifies to \( f(x) = x + 2 \) (since \( x + 2 \) is non-negative in this interval). 2. For \( -1 \leq x < 0 \) (where \( [x] = -1 \)): \[ f(x) = |x - (-1)| = |x + 1| \] This simplifies to \( f(x) = x + 1 \). 3. For \( 0 \leq x < 1 \) (where \( [x] = 0 \)): \[ f(x) = |x - 0| = |x| = x. \] 4. For \( 1 \leq x < 2 \) (where \( [x] = 1 \)): \[ f(x) = |x - 1| = x - 1. \] 5. For \( 2 \leq x < 3 \) (where \( [x] = 2 \)): \[ f(x) = |x - 2| = x - 2. \] 6. For \( 3 \leq x < 4 \) (where \( [x] = 3 \)): \[ f(x) = |x - 3| = x - 3. \] ### Step 3: Calculate the integral over each interval Now we compute the integral over each interval: 1. **Interval \([-2, -1]\)**: \[ \int_{-2}^{-1} (x + 2) \, dx = \left[ \frac{x^2}{2} + 2x \right]_{-2}^{-1} = \left( \frac{(-1)^2}{2} + 2(-1) \right) - \left( \frac{(-2)^2}{2} + 2(-2) \right) = \left( \frac{1}{2} - 2 \right) - \left( 2 - 4 \right) = \left( -\frac{3}{2} \right) - (-2) = \frac{1}{2} \] 2. **Interval \([-1, 0]\)**: \[ \int_{-1}^{0} (x + 1) \, dx = \left[ \frac{x^2}{2} + x \right]_{-1}^{0} = \left( 0 \right) - \left( \frac{(-1)^2}{2} - 1 \right) = 0 - \left( \frac{1}{2} - 1 \right) = \frac{1}{2} \] 3. **Interval \([0, 1]\)**: \[ \int_{0}^{1} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{1} = \frac{1}{2} \] 4. **Interval \([1, 2]\)**: \[ \int_{1}^{2} (x - 1) \, dx = \left[ \frac{x^2}{2} - x \right]_{1}^{2} = \left( 1 - 2 \right) - \left( \frac{1}{2} - 1 \right) = -1 - (-\frac{1}{2}) = -1 + \frac{1}{2} = -\frac{1}{2} \] 5. **Interval \([2, 3]\)**: \[ \int_{2}^{3} (x - 2) \, dx = \left[ \frac{x^2}{2} - 2x \right]_{2}^{3} = \left( \frac{9}{2} - 6 \right) - \left( \frac{4}{2} - 4 \right) = \left( \frac{9}{2} - 6 \right) - (-2) = \left( \frac{9}{2} - \frac{12}{2} + \frac{4}{2} \right) = \frac{1}{2} \] 6. **Interval \([3, 4]\)**: \[ \int_{3}^{4} (x - 3) \, dx = \left[ \frac{x^2}{2} - 3x \right]_{3}^{4} = \left( \frac{16}{2} - 12 \right) - \left( \frac{9}{2} - 9 \right) = (8 - 12) - \left( \frac{9}{2} - \frac{18}{2} \right) = -4 - (-\frac{9}{2}) = -4 + \frac{9}{2} = -\frac{8}{2} + \frac{9}{2} = \frac{1}{2} \] ### Step 4: Sum the integrals Now we sum the results from all intervals: \[ \int_{-2}^{4} f(x) \, dx = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 3 \] ### Final Answer Thus, the value of the integral \( \int_{-2}^{4} f(x) \, dx \) is \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f : R to R is a function defined as f(x) where = {(|x-[x]| ,:[x] "is odd"),(|x - [x + 1]| ,:[x] "is even"):} [.] denotes the greatest integer function, then int_(-2)^(4) dx is equal to

Let f(x) = 1 + |x|,x = -1, where [*] denotes the greatest integer function.Then f { f (- 2.3)} is equal to

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greatest integer function).Then f^-1 (x) is

If f: R to R is defined by f(x)=x-[x]-(1)/(2) for all x in R , where [x] denotes the greatest integer function, then {x in R: f(x)=(1)/(2)} is equal to

If f(x) =2 [x]+ cos x , then f: R ->R is: (where [ ] denotes greatest integer function)

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)...

    Text Solution

    |

  2. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |

  3. Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x...

    Text Solution

    |

  4. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  5. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  6. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |

  7. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  8. Evaluate: int0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[do...

    Text Solution

    |

  9. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  10. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  11. Consider the integrals I(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx...

    Text Solution

    |

  12. Given overset(2)underset(1)inte^(x^(2))dx=a, the value of overset(e^(4...

    Text Solution

    |

  13. The area bounded by the curve y=[x^2/64+2],y=x-1,y=x-1 and x=0 above t...

    Text Solution

    |

  14. Area enclosed by the curve (y-sin^(- 1)x)^2=x-x^2, is (A) pi/2 sq...

    Text Solution

    |

  15. Area of the region which consists of all the points satisfying the con...

    Text Solution

    |

  16. A point P(x,y) moves such that [x+y+1]=[x]. Where [.] denotes greatest...

    Text Solution

    |

  17. Two lines drawn through the point P (4, 0) divide the area bounded by ...

    Text Solution

    |

  18. The area of the smaller region in which the curve y=[(x^(3))/(100)+(x...

    Text Solution

    |

  19. Consider a rectangle ABCD formed by the points A=(0,0), B= (6, 0), C =...

    Text Solution

    |

  20. If f'(x) = f(x)+ int (0)^(1)f (x) dx and given f (0) =1, then int f (x...

    Text Solution

    |