Home
Class 12
MATHS
If f(x) = sin x+cos x and g(x) = {:{((|x...

If `f(x) = sin x+cos x` and `g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):}` then the value of `int_(-pi//4)^(2pi) gof(x) dx` is equal to (a) `(3pi)/(4)` (b) `(pi)/(4)` (c) `pi` (d) None of these

A

`(3pi)/(4)`

B

`(pi)/(4)`

C

`pi`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-\frac{\pi}{4}}^{2\pi} g(f(x)) \, dx \), where \( f(x) = \sin x + \cos x \) and \( g(x) = \frac{|x|}{x} \) for \( x \neq 0 \) and \( g(0) = 2 \), we will follow these steps: ### Step 1: Analyze the function \( f(x) \) The function \( f(x) = \sin x + \cos x \) can be rewritten using the identity: \[ f(x) = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] This is because: \[ \sin x + \cos x = \sqrt{2} \left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x\right) = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] ### Step 2: Determine the range of \( f(x) \) The maximum value of \( f(x) \) occurs when \( \sin\left(x + \frac{\pi}{4}\right) = 1 \), which gives: \[ f(x)_{\text{max}} = \sqrt{2} \] The minimum value occurs when \( \sin\left(x + \frac{\pi}{4}\right) = -1 \), giving: \[ f(x)_{\text{min}} = -\sqrt{2} \] ### Step 3: Evaluate \( g(f(x)) \) We need to evaluate \( g(f(x)) \): - For \( f(x) > 0 \) (i.e., \( 0 < f(x) \leq \sqrt{2} \)), \( g(f(x)) = 1 \). - For \( f(x) < 0 \) (i.e., \( -\sqrt{2} \leq f(x) < 0 \)), \( g(f(x)) = -1 \). - At \( f(x) = 0 \), \( g(f(x)) = 2 \). ### Step 4: Find the intervals where \( f(x) \) is positive or negative To find where \( f(x) = 0 \): \[ \sin x + \cos x = 0 \implies \tan x = -1 \implies x = -\frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] The solutions in the interval \( \left[-\frac{\pi}{4}, 2\pi\right] \) are: - \( x = -\frac{\pi}{4} \) - \( x = \frac{3\pi}{4} \) - \( x = \frac{7\pi}{4} \) ### Step 5: Set up the integral Now we can split the integral based on the intervals determined: \[ \int_{-\frac{\pi}{4}}^{2\pi} g(f(x)) \, dx = \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} (-1) \, dx + \int_{\frac{3\pi}{4}}^{\frac{7\pi}{4}} (1) \, dx + \int_{\frac{7\pi}{4}}^{2\pi} (1) \, dx \] ### Step 6: Calculate each integral 1. **First integral**: \[ \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} (-1) \, dx = -\left(\frac{3\pi}{4} + \frac{\pi}{4}\right) = -\pi \] 2. **Second integral**: \[ \int_{\frac{3\pi}{4}}^{\frac{7\pi}{4}} (1) \, dx = \left(\frac{7\pi}{4} - \frac{3\pi}{4}\right) = \pi \] 3. **Third integral**: \[ \int_{\frac{7\pi}{4}}^{2\pi} (1) \, dx = \left(2\pi - \frac{7\pi}{4}\right) = \frac{1\pi}{4} \] ### Step 7: Combine the results Now, we combine the results of the integrals: \[ \int_{-\frac{\pi}{4}}^{2\pi} g(f(x)) \, dx = -\pi + \pi + \frac{\pi}{4} = \frac{\pi}{4} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2pi) |cos x -sin x|dx is

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

int_(-pi//2)^(pi//2) cos x dx is equal to A) 0 B) 1 C) 2 D) 4

int_(0)^(pi^(2)//4) sin sqrt(x)dx equals to

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equal to

The value of int_(-pi)^pisin^3xcos^2x\ dx\ is a. (pi^4)/2 b. (pi^4)/4 c. 0 d. none of these

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. The value of the integral int0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

    Text Solution

    |

  2. Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x...

    Text Solution

    |

  3. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  4. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  5. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |

  6. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  7. Evaluate: int0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[do...

    Text Solution

    |

  8. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  9. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  10. Consider the integrals I(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx...

    Text Solution

    |

  11. Given overset(2)underset(1)inte^(x^(2))dx=a, the value of overset(e^(4...

    Text Solution

    |

  12. The area bounded by the curve y=[x^2/64+2],y=x-1,y=x-1 and x=0 above t...

    Text Solution

    |

  13. Area enclosed by the curve (y-sin^(- 1)x)^2=x-x^2, is (A) pi/2 sq...

    Text Solution

    |

  14. Area of the region which consists of all the points satisfying the con...

    Text Solution

    |

  15. A point P(x,y) moves such that [x+y+1]=[x]. Where [.] denotes greatest...

    Text Solution

    |

  16. Two lines drawn through the point P (4, 0) divide the area bounded by ...

    Text Solution

    |

  17. The area of the smaller region in which the curve y=[(x^(3))/(100)+(x...

    Text Solution

    |

  18. Consider a rectangle ABCD formed by the points A=(0,0), B= (6, 0), C =...

    Text Solution

    |

  19. If f'(x) = f(x)+ int (0)^(1)f (x) dx and given f (0) =1, then int f (x...

    Text Solution

    |

  20. (sin 2 kx)/(sin x)=2[cos x + cos 3 x + …+cos (2k -1)x], then value of ...

    Text Solution

    |