Home
Class 12
MATHS
Consider the integrals I(1)=overset(1)...

Consider the integrals
`I_(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx,I_(2)=overset(1)underset(0)int e^(-x^(2))cos^(2)x dx,I_(3)=overset(1)underset(0)int e^(-x^(2//2))cos^(2)xdx`
and `I_(4)=overset(1)underset(0)int e^(-x^(2//2))dx`. The greatest of these integrals, is

A

`I_(1)lt I_(2)lt I_(3)`

B

`I_(3)lt I_(2)lt I_(1)`

C

`I_(2)lt I_(1)lt I_(3)`

D

`I_(2)lt I_(3)lt I_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the integrals \( I_1, I_2, I_3, \) and \( I_4 \) defined as follows: \[ I_1 = \int_0^1 e^{-x} \cos^2 x \, dx \] \[ I_2 = \int_0^1 e^{-x^2} \cos^2 x \, dx \] \[ I_3 = \int_0^1 e^{-\frac{x^2}{2}} \cos^2 x \, dx \] \[ I_4 = \int_0^1 e^{-\frac{x^2}{2}} \, dx \] ### Step 1: Establishing Inequalities We will analyze the behavior of the exponential functions in each integral. Notice that for \( x \) in the interval \( [0, 1] \): - \( e^{-x} \) is decreasing. - \( e^{-x^2} \) is decreasing and greater than \( e^{-\frac{x^2}{2}} \) because \( -x^2 < -\frac{x^2}{2} \) for \( x > 0 \). - \( e^{-\frac{x^2}{2}} \) is also decreasing. From the above observations, we can establish the following inequalities: \[ e^{-x} < e^{-x^2} < e^{-\frac{x^2}{2}} \quad \text{for } x \in [0, 1] \] ### Step 2: Multiplying by \( \cos^2 x \) Since \( \cos^2 x \) is non-negative for \( x \in [0, 1] \), we can multiply the inequalities by \( \cos^2 x \): \[ e^{-x} \cos^2 x < e^{-x^2} \cos^2 x < e^{-\frac{x^2}{2}} \cos^2 x \quad \text{for } x \in [0, 1] \] ### Step 3: Integrating the Inequalities Now we integrate the inequalities over the interval from 0 to 1: \[ \int_0^1 e^{-x} \cos^2 x \, dx < \int_0^1 e^{-x^2} \cos^2 x \, dx < \int_0^1 e^{-\frac{x^2}{2}} \cos^2 x \, dx \] This gives us: \[ I_1 < I_2 < I_3 \] ### Step 4: Comparing \( I_3 \) and \( I_4 \) Next, we compare \( I_3 \) and \( I_4 \). Since \( \cos^2 x \leq 1 \) for all \( x \), we have: \[ I_3 = \int_0^1 e^{-\frac{x^2}{2}} \cos^2 x \, dx \leq \int_0^1 e^{-\frac{x^2}{2}} \, dx = I_4 \] Thus, we can conclude: \[ I_1 < I_2 < I_3 < I_4 \] ### Conclusion The greatest of these integrals is: \[ \boxed{I_4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If I_(1)=overset(1)underset(0)int 2^(x^(2)) dx, I_(2)=overset(1)underset(0)int 2^(x^(3)) dx, I_(3)=overset(2)underset(1)int 2^(x^(2))dx and I_(4)=overset(2)underset(1)int 2^(x^(3))dx then

If I=overset(1)underset(0)int (1)/(1+x^(pi//2))dx then

The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in the integral

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-(1//2)x^(2))dx . The greatest of these integrals, is

Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)int f(2a-x)dx=mu . Then, overset(2a)underset(0)int f(x) dx equal to

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

(i) int_(0)^( pi)x cos^(2)xdx

If overset(4)underset(-1)int f(x)=4 and overset(4)underset(2)int (3-f(x))dx=7 , then the value of overset(-1)underset(2)int f(x)dx , is

The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overset(cos^(2)x)underset(0)int cos^(-1)sqrt(t)dt , is

Given overset(2)underset(1)inte^(x^(2))dx=a , the value of overset(e^(4))underset(e )int sqrt(log_(e )x)dx , is

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  2. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  3. Consider the integrals I(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx...

    Text Solution

    |

  4. Given overset(2)underset(1)inte^(x^(2))dx=a, the value of overset(e^(4...

    Text Solution

    |

  5. The area bounded by the curve y=[x^2/64+2],y=x-1,y=x-1 and x=0 above t...

    Text Solution

    |

  6. Area enclosed by the curve (y-sin^(- 1)x)^2=x-x^2, is (A) pi/2 sq...

    Text Solution

    |

  7. Area of the region which consists of all the points satisfying the con...

    Text Solution

    |

  8. A point P(x,y) moves such that [x+y+1]=[x]. Where [.] denotes greatest...

    Text Solution

    |

  9. Two lines drawn through the point P (4, 0) divide the area bounded by ...

    Text Solution

    |

  10. The area of the smaller region in which the curve y=[(x^(3))/(100)+(x...

    Text Solution

    |

  11. Consider a rectangle ABCD formed by the points A=(0,0), B= (6, 0), C =...

    Text Solution

    |

  12. If f'(x) = f(x)+ int (0)^(1)f (x) dx and given f (0) =1, then int f (x...

    Text Solution

    |

  13. (sin 2 kx)/(sin x)=2[cos x + cos 3 x + …+cos (2k -1)x], then value of ...

    Text Solution

    |

  14. If int0^1(sint)/(1+t)dt=alpha, then the value of the integral int(4pi-...

    Text Solution

    |

  15. If n gt 1. Evaluate underset(0)overset(oo)int(dx)/((x+sqrt(1+x^(2)))^(...

    Text Solution

    |

  16. Let f(x) and g(x) be two functions satisfying f(x^(2))+g(4-x)=4x^(3),...

    Text Solution

    |

  17. f,g,h are continuous in [0,1],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5...

    Text Solution

    |

  18. The value of int(1)^(e)((tan^(-1))/x+(logx)/(1+x^(2)))dx is

    Text Solution

    |

  19. Area bounded by x-axis and the curve f(x) = e^[x].e^|x|.e^{x} between ...

    Text Solution

    |

  20. P(x) is a non-zero polynomial such that P(0)=0 and P(x^3)=x^4P(x),P'(1...

    Text Solution

    |