Home
Class 12
MATHS
Given overset(2)underset(1)inte^(x^(2))d...

Given `overset(2)underset(1)inte^(x^(2))dx=a`, the value of `overset(e^(4))underset(e )int sqrt(log_(e )x)dx`, is

A

`e^(4)-e`

B

`e^(4)-a`

C

`2e^(4)-a`

D

`2e^(4)-e-a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first evaluate the given integral and then find the required value. ### Step 1: Evaluate the given integral We are given: \[ \int_{1}^{2} e^{x^2} \, dx = a \] ### Step 2: Change of variable for the first integral Let \( t = x^2 \). Then, we have: \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2\sqrt{t}} \] Now, we need to change the limits of integration: - When \( x = 1 \), \( t = 1^2 = 1 \) - When \( x = 2 \), \( t = 2^2 = 4 \) Thus, the integral becomes: \[ \int_{1}^{2} e^{x^2} \, dx = \int_{1}^{4} e^t \cdot \frac{dt}{2\sqrt{t}} = \frac{1}{2} \int_{1}^{4} \frac{e^t}{\sqrt{t}} \, dt = a \] ### Step 3: Evaluate the second integral We need to find: \[ \int_{e}^{e^4} \sqrt{\ln x} \, dx \] ### Step 4: Change of variable for the second integral Let \( u = \ln x \). Then, we have: \[ x = e^u \quad \Rightarrow \quad dx = e^u \, du \] Now, we change the limits of integration: - When \( x = e \), \( u = \ln e = 1 \) - When \( x = e^4 \), \( u = \ln(e^4) = 4 \) Thus, the integral becomes: \[ \int_{e}^{e^4} \sqrt{\ln x} \, dx = \int_{1}^{4} \sqrt{u} \cdot e^u \, du \] ### Step 5: Evaluate the new integral using integration by parts Let: - \( v = \sqrt{u} \) and \( dv = \frac{1}{2\sqrt{u}} \, du \) - \( dw = e^u \, du \) and \( w = e^u \) Using integration by parts: \[ \int v \, dw = vw - \int w \, dv \] We have: \[ \int_{1}^{4} \sqrt{u} \cdot e^u \, du = \left[ \sqrt{u} \cdot e^u \right]_{1}^{4} - \int_{1}^{4} e^u \cdot \frac{1}{2\sqrt{u}} \, du \] ### Step 6: Calculate the boundary terms Calculating the boundary terms: \[ \left[ \sqrt{u} \cdot e^u \right]_{1}^{4} = \left( \sqrt{4} \cdot e^4 \right) - \left( \sqrt{1} \cdot e^1 \right) = 2e^4 - e \] ### Step 7: Substitute back into the integral Now, we have: \[ \int_{1}^{4} \sqrt{u} \cdot e^u \, du = 2e^4 - e - \frac{1}{2} \int_{1}^{4} e^u \cdot \frac{1}{\sqrt{u}} \, du \] The last integral is equal to \( a \) (from Step 2): \[ \int_{1}^{4} e^u \cdot \frac{1}{\sqrt{u}} \, du = 2a \] ### Step 8: Final expression Thus, we have: \[ \int_{1}^{4} \sqrt{u} \cdot e^u \, du = 2e^4 - e - a \] ### Final Answer The value of the integral \( \int_{e}^{e^4} \sqrt{\ln x} \, dx \) is: \[ 2e^4 - e - a \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If overset(4)underset(-1)int f(x)=4 and overset(4)underset(2)int (3-f(x))dx=7 , then the value of overset(-1)underset(2)int f(x)dx , is

int log_(e)(a^(x))dx=

The value of the integral overset(e )underset(1//e)int |logx|dx , is

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equal to

int cos (log_e x)dx is equal to

If I=overset(1)underset(0)int (1)/(1+x^(pi//2))dx then

int (1+log_e x)/x dx

The value of the integral underset(e^(-1))overset(e^(2))int |(log_(e)x)/(x)|dx is

If I_(1)=overset(1)underset(0)int 2^(x^(2)) dx, I_(2)=overset(1)underset(0)int 2^(x^(3)) dx, I_(3)=overset(2)underset(1)int 2^(x^(2))dx and I_(4)=overset(2)underset(1)int 2^(x^(3))dx then

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  2. Consider the integrals I(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx...

    Text Solution

    |

  3. Given overset(2)underset(1)inte^(x^(2))dx=a, the value of overset(e^(4...

    Text Solution

    |

  4. The area bounded by the curve y=[x^2/64+2],y=x-1,y=x-1 and x=0 above t...

    Text Solution

    |

  5. Area enclosed by the curve (y-sin^(- 1)x)^2=x-x^2, is (A) pi/2 sq...

    Text Solution

    |

  6. Area of the region which consists of all the points satisfying the con...

    Text Solution

    |

  7. A point P(x,y) moves such that [x+y+1]=[x]. Where [.] denotes greatest...

    Text Solution

    |

  8. Two lines drawn through the point P (4, 0) divide the area bounded by ...

    Text Solution

    |

  9. The area of the smaller region in which the curve y=[(x^(3))/(100)+(x...

    Text Solution

    |

  10. Consider a rectangle ABCD formed by the points A=(0,0), B= (6, 0), C =...

    Text Solution

    |

  11. If f'(x) = f(x)+ int (0)^(1)f (x) dx and given f (0) =1, then int f (x...

    Text Solution

    |

  12. (sin 2 kx)/(sin x)=2[cos x + cos 3 x + …+cos (2k -1)x], then value of ...

    Text Solution

    |

  13. If int0^1(sint)/(1+t)dt=alpha, then the value of the integral int(4pi-...

    Text Solution

    |

  14. If n gt 1. Evaluate underset(0)overset(oo)int(dx)/((x+sqrt(1+x^(2)))^(...

    Text Solution

    |

  15. Let f(x) and g(x) be two functions satisfying f(x^(2))+g(4-x)=4x^(3),...

    Text Solution

    |

  16. f,g,h are continuous in [0,1],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5...

    Text Solution

    |

  17. The value of int(1)^(e)((tan^(-1))/x+(logx)/(1+x^(2)))dx is

    Text Solution

    |

  18. Area bounded by x-axis and the curve f(x) = e^[x].e^|x|.e^{x} between ...

    Text Solution

    |

  19. P(x) is a non-zero polynomial such that P(0)=0 and P(x^3)=x^4P(x),P'(1...

    Text Solution

    |

  20. Let lambda=int0^1(dx)/(1+x^3), p=lim(n rarr oo)[prod(r=1)^n(n^3+r^3)/(...

    Text Solution

    |