Home
Class 12
MATHS
Let f(x) and g(x) be two functions satis...

Let f(x) and g(x) be two functions satisfying `f(x^(2))+g(4-x)=4x^(3), g(4-x)+g(x)=0`, then the value of `int_(-4)^(4)f(x^(2))dx` is :

A

512

B

64

C

256

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Understand the given equations We have two equations: 1. \( f(x^2) + g(4 - x) = 4x^3 \) 2. \( g(4 - x) + g(x) = 0 \) From the second equation, we can express \( g(4 - x) \) in terms of \( g(x) \): \[ g(4 - x) = -g(x) \] ### Step 2: Substitute \( g(4 - x) \) in the first equation Substituting \( g(4 - x) = -g(x) \) into the first equation gives: \[ f(x^2) - g(x) = 4x^3 \] Thus, we can rearrange this to: \[ f(x^2) = 4x^3 + g(x) \] ### Step 3: Integrate both sides from 0 to 4 Now we will integrate both sides from \( x = 0 \) to \( x = 4 \): \[ \int_0^4 f(x^2) \, dx = \int_0^4 (4x^3 + g(x)) \, dx \] ### Step 4: Calculate the right-hand side We can split the integral on the right: \[ \int_0^4 (4x^3 + g(x)) \, dx = \int_0^4 4x^3 \, dx + \int_0^4 g(x) \, dx \] Calculating \( \int_0^4 4x^3 \, dx \): \[ \int_0^4 4x^3 \, dx = 4 \left[ \frac{x^4}{4} \right]_0^4 = \left[ x^4 \right]_0^4 = 4^4 - 0 = 256 \] Thus, we have: \[ \int_0^4 f(x^2) \, dx = 256 + \int_0^4 g(x) \, dx \] ### Step 5: Use the property of \( g(x) \) From the second equation \( g(4 - x) + g(x) = 0 \), we can derive: \[ g(4 - x) = -g(x) \] Using the property of integrals: \[ \int_0^4 g(4 - x) \, dx = \int_0^4 -g(x) \, dx \] This implies: \[ \int_0^4 g(4 - x) \, dx = -\int_0^4 g(x) \, dx \] Since \( g(4 - x) \) is equal to \( g(x) \) when integrated over the interval \( [0, 4] \), we can conclude: \[ \int_0^4 g(x) \, dx = -\int_0^4 g(x) \, dx \implies 2\int_0^4 g(x) \, dx = 0 \implies \int_0^4 g(x) \, dx = 0 \] ### Step 6: Substitute back into the integral Now substituting back, we have: \[ \int_0^4 f(x^2) \, dx = 256 + 0 = 256 \] ### Step 7: Find the integral from -4 to 4 Since \( f(x^2) \) is an even function (as \( x^2 \) is even), we can use the property of even functions: \[ \int_{-4}^{4} f(x^2) \, dx = 2 \int_0^4 f(x^2) \, dx = 2 \times 256 = 512 \] ### Final Answer Thus, the value of \( \int_{-4}^{4} f(x^2) \, dx \) is \( \boxed{512} \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be the function satisfying f(x)+g(x)=x^2 . Then the value of integral int_0^1 f(x)g(x)dx is equal to (A) (e-2)/4 (B) (e-3)/2 (C) (e-4)/2 (D) none of these

Let f(x) be a function satisfying f'(x)=f(x) with f(0) =1 and g(x) be a function that satisfies f(x) + g(x) = x^2 . Then the value of the integral int_0^1f(x) g(x) dx , is

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

Let f(x)=x^2 and g(x) = 2x + 1 be two real functions. find (f +g)(x) , (f-g)(x) , (fg)(x) , (f/g)(x) .

If f(x) and g(x) are two continuous functions defined on [-a,a] then the the value of int_(-a)^(a) {f(x)f+(-x) } {g(x)-g(-x)}dx is,

Let f:R→R, g:R→R be two functions given by f(x)=2x+4 , g(x)=x-4 then fog(x) is

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

Let f(x) and g(x) be two real valued functions then |f(x) - g(x)| le |f(x)| + |g(x)| Let f(x) = x-3 and g(x) = 4-x, then The number of solution(s) of the above inequality when x ge 4 is

Let f (x) = x^(3)+ 4x ^(2)+ 6x and g (x) be inverse then the vlaue of g' (-4):

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. If int0^1(sint)/(1+t)dt=alpha, then the value of the integral int(4pi-...

    Text Solution

    |

  2. If n gt 1. Evaluate underset(0)overset(oo)int(dx)/((x+sqrt(1+x^(2)))^(...

    Text Solution

    |

  3. Let f(x) and g(x) be two functions satisfying f(x^(2))+g(4-x)=4x^(3),...

    Text Solution

    |

  4. f,g,h are continuous in [0,1],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5...

    Text Solution

    |

  5. The value of int(1)^(e)((tan^(-1))/x+(logx)/(1+x^(2)))dx is

    Text Solution

    |

  6. Area bounded by x-axis and the curve f(x) = e^[x].e^|x|.e^{x} between ...

    Text Solution

    |

  7. P(x) is a non-zero polynomial such that P(0)=0 and P(x^3)=x^4P(x),P'(1...

    Text Solution

    |

  8. Let lambda=int0^1(dx)/(1+x^3), p=lim(n rarr oo)[prod(r=1)^n(n^3+r^3)/(...

    Text Solution

    |

  9. Let f: (0, infty) rarr R and F (x) = int(0) ^(x) f(t) dt . If F(x^(2)...

    Text Solution

    |

  10. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  11. The value of int1^2(x^([x^2])+[x^2]^x)dx, where [.] denotes the greate...

    Text Solution

    |

  12. if f(x) = |(cosx,e^(x^(2)),2x cos ^(2) x//2),(x^(2) ,sec x,sin x + x^(...

    Text Solution

    |

  13. Evaluate: int0^2(dx)/((17+8x-4x^2)[e^(6(1-x))+1)

    Text Solution

    |

  14. The value of x satisfying int(0)^(2[x+14]){(x)/(2)} dx=int(0)^({x})[x...

    Text Solution

    |

  15. If f(x) is a continous function such that f(x)|0,AA x in[2,10] and int...

    Text Solution

    |

  16. Let f be a one-one function such that f(x).f(y) + 2 = f(x) + f(y) + f(...

    Text Solution

    |

  17. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  18. If n is a positive integer then int(0)^(1)(ln x)^(n)dx is :

    Text Solution

    |

  19. int(1)^(2)((x^(2)-1)dx)/(x^(3).sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where u...

    Text Solution

    |

  20. The value of int(a)^(b)(x^(n-1)((n-2)x^(2)+(n-1)(a+b)x+nab))/((x+a)^(2...

    Text Solution

    |