Home
Class 12
MATHS
f,g,h are continuous in [0,1],f(a-x)=f(x...

`f,g,h` are continuous in `[0,1],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5`. Then prove that `int_(0)^(a)f(x)g(x)h(x)dx=0`.

A

1

B

0

C

a

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

f,g, h , are continuous in [0, a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5. Then prove that int_0^af(x)g(x)h(x)dx=0

Prove that int_(0)^(a)f(x)g(a-x)dx=int_(0)^(a)g(x)f(a-x)dx .

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

If f(x) and g(x) are two continuous functions defined on [-a,a] then the the value of int_(-a)^(a) {f(x)f+(-x) } {g(x)-g(-x)}dx is,

If f(x)=x-1, g(x)=3x , and h(x)=5/x , then f^(-1)(g(h(5))) =

Statement-1: int_(0)^(1)(cos x)/(1+x^(2))dxgt(pi)/(4)cos1 Statement-2: If f(x) and g(x) are continuous on [a,b], then int_(a)^(b) f(x) g(x)dx=f(c )int_(a)^(b)g(x) for some c in (a,b) .

If f,g,a n d \ h are differentiable functions of x and d(x)=|[f,g,h],[(xf)',(xg)',(x h)'],[(x^(2)f)'',(x^2g)'',(x^2h)'']| prove that d^(prime)(x)=|[f,g,h],[f',g',h'],[(x^3f' ')',(x^3g' ')',(x^3h ' ')']|

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. If n gt 1. Evaluate underset(0)overset(oo)int(dx)/((x+sqrt(1+x^(2)))^(...

    Text Solution

    |

  2. Let f(x) and g(x) be two functions satisfying f(x^(2))+g(4-x)=4x^(3),...

    Text Solution

    |

  3. f,g,h are continuous in [0,1],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5...

    Text Solution

    |

  4. The value of int(1)^(e)((tan^(-1))/x+(logx)/(1+x^(2)))dx is

    Text Solution

    |

  5. Area bounded by x-axis and the curve f(x) = e^[x].e^|x|.e^{x} between ...

    Text Solution

    |

  6. P(x) is a non-zero polynomial such that P(0)=0 and P(x^3)=x^4P(x),P'(1...

    Text Solution

    |

  7. Let lambda=int0^1(dx)/(1+x^3), p=lim(n rarr oo)[prod(r=1)^n(n^3+r^3)/(...

    Text Solution

    |

  8. Let f: (0, infty) rarr R and F (x) = int(0) ^(x) f(t) dt . If F(x^(2)...

    Text Solution

    |

  9. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  10. The value of int1^2(x^([x^2])+[x^2]^x)dx, where [.] denotes the greate...

    Text Solution

    |

  11. if f(x) = |(cosx,e^(x^(2)),2x cos ^(2) x//2),(x^(2) ,sec x,sin x + x^(...

    Text Solution

    |

  12. Evaluate: int0^2(dx)/((17+8x-4x^2)[e^(6(1-x))+1)

    Text Solution

    |

  13. The value of x satisfying int(0)^(2[x+14]){(x)/(2)} dx=int(0)^({x})[x...

    Text Solution

    |

  14. If f(x) is a continous function such that f(x)|0,AA x in[2,10] and int...

    Text Solution

    |

  15. Let f be a one-one function such that f(x).f(y) + 2 = f(x) + f(y) + f(...

    Text Solution

    |

  16. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  17. If n is a positive integer then int(0)^(1)(ln x)^(n)dx is :

    Text Solution

    |

  18. int(1)^(2)((x^(2)-1)dx)/(x^(3).sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where u...

    Text Solution

    |

  19. The value of int(a)^(b)(x^(n-1)((n-2)x^(2)+(n-1)(a+b)x+nab))/((x+a)^(2...

    Text Solution

    |

  20. The number of values of x satisfying the equation : int (-4) ^(x) (8...

    Text Solution

    |