Home
Class 12
MATHS
Area bounded by x-axis and the curve f(x...

Area bounded by x-axis and the curve `f(x) = e^`[x]`.e^|x|.e^`{x}`` between the lines x=-1 and x=2,where [x] represents greatest integer function (a) `(e+1)/(2)` (b) `(e^(2)+1)/(2)` (c) `(e^(3)+1)/(2)` (d) `(e^(4)+1)/(2)`

A

`(e+1)/(2)`

B

`(e^(2)+1)/(2)`

C

`(e^(3)+1)/(2)`

D

`(e^(4)+1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area bounded by the x-axis and the curve \( f(x) = e^{[x]} \cdot e^{|x|} \cdot e^{\{x\}} \) between the lines \( x = -1 \) and \( x = 2 \), we will follow these steps: ### Step 1: Understand the function The function can be expressed as: \[ f(x) = e^{[x]} \cdot e^{|x|} \cdot e^{\{x\}} \] where \([x]\) is the greatest integer function and \(\{x\} = x - [x]\) is the fractional part of \(x\). ### Step 2: Analyze the intervals We need to analyze the function in the intervals: - For \( -1 \leq x < 0 \) - For \( 0 \leq x < 1 \) - For \( 1 \leq x < 2 \) ### Step 3: Calculate \( f(x) \) in each interval 1. **For \( -1 \leq x < 0 \)**: - Here, \([x] = -1\) and \(|x| = -x\), thus: \[ f(x) = e^{-1} \cdot e^{-x} \cdot e^{x} = e^{-1} \] 2. **For \( 0 \leq x < 1 \)**: - Here, \([x] = 0\) and \(|x| = x\), thus: \[ f(x) = e^{0} \cdot e^{x} \cdot e^{x} = e^{2x} \] 3. **For \( 1 \leq x < 2 \)**: - Here, \([x] = 1\) and \(|x| = x\), thus: \[ f(x) = e^{1} \cdot e^{x} \cdot e^{x-1} = e^{2x} \] ### Step 4: Set up the integral for the area The area \( A \) can be calculated as: \[ A = \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx \] ### Step 5: Calculate each integral 1. **Integral from \(-1\) to \(0\)**: \[ \int_{-1}^{0} e^{-1} \, dx = e^{-1} \cdot (0 - (-1)) = e^{-1} \] 2. **Integral from \(0\) to \(1\)**: \[ \int_{0}^{1} e^{2x} \, dx = \left[ \frac{e^{2x}}{2} \right]_{0}^{1} = \frac{e^{2}}{2} - \frac{1}{2} = \frac{e^{2} - 1}{2} \] 3. **Integral from \(1\) to \(2\)**: \[ \int_{1}^{2} e^{2x} \, dx = \left[ \frac{e^{2x}}{2} \right]_{1}^{2} = \frac{e^{4}}{2} - \frac{e^{2}}{2} = \frac{e^{4} - e^{2}}{2} \] ### Step 6: Combine the areas Now, adding all parts together: \[ A = e^{-1} + \frac{e^{2} - 1}{2} + \frac{e^{4} - e^{2}}{2} \] \[ = e^{-1} + \frac{e^{2} - 1 + e^{4} - e^{2}}{2} \] \[ = e^{-1} + \frac{e^{4} - 1}{2} \] ### Step 7: Simplify the expression To combine the terms, we can express \( e^{-1} \) as \( \frac{1}{e} \): \[ A = \frac{1}{e} + \frac{e^{4} - 1}{2} \] To combine these fractions, we can find a common denominator: \[ A = \frac{2 + e^{4} - 1}{2e} = \frac{e^{4} + 1}{2e} \] ### Final Answer Thus, the area bounded by the x-axis and the curve is: \[ \frac{e^{4} + 1}{2} \] ### Conclusion The correct answer is: (d) \( \frac{e^{4} + 1}{2} \)
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions (e^x)/((1+e^x)(2+e^x)

Integrate the functions (e^(2x)-1)/(e^(2x)+1)

Integrate the functions (e^(2x)-1)/(e^(2x)+1)

Find the range of f(x)=(x-[x])/(1-[x]+x '),w h e r e[] represents the greatest integer function.

Find the range of f(x)=(x-[x])/(1-[x]+x '),w h e r e[] represents the greatest integer function.

Draw the graph of f(x) = [log_(e)x], e^(-2) lt x lt 10 , where [*] represents the greatest integer function.

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

Discuss the differentiability of f(x)= [x] +|1-x| , x in (-1,3),w h e r e[dot] represents greatest integer function.

f:(2,3)vec(0,1)d efin e db yf(x)=x-[x],w h e r e[dot] represents the greatest integer function.

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. f,g,h are continuous in [0,1],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5...

    Text Solution

    |

  2. The value of int(1)^(e)((tan^(-1))/x+(logx)/(1+x^(2)))dx is

    Text Solution

    |

  3. Area bounded by x-axis and the curve f(x) = e^[x].e^|x|.e^{x} between ...

    Text Solution

    |

  4. P(x) is a non-zero polynomial such that P(0)=0 and P(x^3)=x^4P(x),P'(1...

    Text Solution

    |

  5. Let lambda=int0^1(dx)/(1+x^3), p=lim(n rarr oo)[prod(r=1)^n(n^3+r^3)/(...

    Text Solution

    |

  6. Let f: (0, infty) rarr R and F (x) = int(0) ^(x) f(t) dt . If F(x^(2)...

    Text Solution

    |

  7. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  8. The value of int1^2(x^([x^2])+[x^2]^x)dx, where [.] denotes the greate...

    Text Solution

    |

  9. if f(x) = |(cosx,e^(x^(2)),2x cos ^(2) x//2),(x^(2) ,sec x,sin x + x^(...

    Text Solution

    |

  10. Evaluate: int0^2(dx)/((17+8x-4x^2)[e^(6(1-x))+1)

    Text Solution

    |

  11. The value of x satisfying int(0)^(2[x+14]){(x)/(2)} dx=int(0)^({x})[x...

    Text Solution

    |

  12. If f(x) is a continous function such that f(x)|0,AA x in[2,10] and int...

    Text Solution

    |

  13. Let f be a one-one function such that f(x).f(y) + 2 = f(x) + f(y) + f(...

    Text Solution

    |

  14. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  15. If n is a positive integer then int(0)^(1)(ln x)^(n)dx is :

    Text Solution

    |

  16. int(1)^(2)((x^(2)-1)dx)/(x^(3).sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where u...

    Text Solution

    |

  17. The value of int(a)^(b)(x^(n-1)((n-2)x^(2)+(n-1)(a+b)x+nab))/((x+a)^(2...

    Text Solution

    |

  18. The number of values of x satisfying the equation : int (-4) ^(x) (8...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(...

    Text Solution

    |