Home
Class 12
MATHS
Let lambda=int0^1(dx)/(1+x^3), p=lim(n r...

Let `lambda=int_0^1(dx)/(1+x^3), p=lim_(n rarr oo)[prod_(r=1)^n(n^3+r^3)/(n^(3n))]^(1//n)` then `ln p` is equal to (a) `ln2-1+lambda` (b) `ln2-3+3lambda` (c) `2ln2-lambda` (d) `ln4-3+3lambda`

A

`log 2-1+lambda`

B

`log 2-3+3lambda`

C

`2log 2-lambda`

D

`log 4-3+2lambda`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \ln p \) where \( p \) is defined as: \[ p = \lim_{n \to \infty} \left( \prod_{r=1}^{n} \frac{n^3 + r^3}{n^{3n}} \right)^{\frac{1}{n}} \] ### Step 1: Rewrite \( p \) We can rewrite \( p \) as follows: \[ p = \lim_{n \to \infty} \left( \frac{1}{n^{3n}} \prod_{r=1}^{n} (n^3 + r^3) \right)^{\frac{1}{n}} \] ### Step 2: Simplify the product The product can be simplified: \[ \prod_{r=1}^{n} (n^3 + r^3) = \prod_{r=1}^{n} n^3 \left(1 + \frac{r^3}{n^3}\right) = n^{3n} \prod_{r=1}^{n} \left(1 + \frac{r^3}{n^3}\right) \] ### Step 3: Substitute back into \( p \) Substituting this back into the expression for \( p \): \[ p = \lim_{n \to \infty} \left( \frac{n^{3n} \prod_{r=1}^{n} \left(1 + \frac{r^3}{n^3}\right)}{n^{3n}} \right)^{\frac{1}{n}} = \lim_{n \to \infty} \left( \prod_{r=1}^{n} \left(1 + \frac{r^3}{n^3}\right) \right)^{\frac{1}{n}} \] ### Step 4: Take the logarithm Taking the logarithm of \( p \): \[ \ln p = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \ln \left(1 + \frac{r^3}{n^3}\right) \] ### Step 5: Change to Riemann sum As \( n \to \infty \), this sum approaches the Riemann integral: \[ \ln p = \int_{0}^{1} \ln \left(1 + x^3\right) \, dx \] ### Step 6: Evaluate the integral Using integration by parts or known integrals, we can evaluate: \[ \int_{0}^{1} \ln(1 + x^3) \, dx = \lambda \] ### Step 7: Combine results From the earlier steps, we have: \[ \ln p = \ln 2 - 3 + 3\lambda \] ### Final Result Thus, the correct option for \( \ln p \) is: \[ \ln p = \ln 2 - 3 + 3\lambda \] So the answer is (b) \( \ln 2 - 3 + 3\lambda \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Let lambda=int_0^1(dx)/(1+x^3),p=(lim)_(n->oo)[(prod_(r=1)^n(n^3+r^3))/(n^(3n))]^(-1/n) then ln p is equal to (a) ln2-1+lambda (b) ln2-3+3lambda (c) 2ln2-lambda (d) ln4-3+3lambda

Let lim_(n->oo)sum_(k=1)^n(lambdak^4+2k^3+k^2+k+1)/(3n^5+n^2+n+5k)=1/3 then lambda is equal to

lim_(n rarr oo)(2^(n+1)+3^(n+1))/(2^n+3^n) equals (A)2 (B)3 (C)5 (D)0

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

If sum_(r=0)^(n-1)log_(2)((r+2)/(r+1)) =prod_(r=10)^(99)log_(r) (r+1), then 'n' is equal to (A) 4 (B) 3 (C) 5 (D) 6

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to (a) 4^(n)-3^(n)+1 (b) 4^(n)-3^(n)-1 (c) 4^(n)-3^(n)+2 (d) 4^(n)-3^(n)

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Area bounded by x-axis and the curve f(x) = e^[x].e^|x|.e^{x} between ...

    Text Solution

    |

  2. P(x) is a non-zero polynomial such that P(0)=0 and P(x^3)=x^4P(x),P'(1...

    Text Solution

    |

  3. Let lambda=int0^1(dx)/(1+x^3), p=lim(n rarr oo)[prod(r=1)^n(n^3+r^3)/(...

    Text Solution

    |

  4. Let f: (0, infty) rarr R and F (x) = int(0) ^(x) f(t) dt . If F(x^(2)...

    Text Solution

    |

  5. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  6. The value of int1^2(x^([x^2])+[x^2]^x)dx, where [.] denotes the greate...

    Text Solution

    |

  7. if f(x) = |(cosx,e^(x^(2)),2x cos ^(2) x//2),(x^(2) ,sec x,sin x + x^(...

    Text Solution

    |

  8. Evaluate: int0^2(dx)/((17+8x-4x^2)[e^(6(1-x))+1)

    Text Solution

    |

  9. The value of x satisfying int(0)^(2[x+14]){(x)/(2)} dx=int(0)^({x})[x...

    Text Solution

    |

  10. If f(x) is a continous function such that f(x)|0,AA x in[2,10] and int...

    Text Solution

    |

  11. Let f be a one-one function such that f(x).f(y) + 2 = f(x) + f(y) + f(...

    Text Solution

    |

  12. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  13. If n is a positive integer then int(0)^(1)(ln x)^(n)dx is :

    Text Solution

    |

  14. int(1)^(2)((x^(2)-1)dx)/(x^(3).sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where u...

    Text Solution

    |

  15. The value of int(a)^(b)(x^(n-1)((n-2)x^(2)+(n-1)(a+b)x+nab))/((x+a)^(2...

    Text Solution

    |

  16. The number of values of x satisfying the equation : int (-4) ^(x) (8...

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(...

    Text Solution

    |

  19. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  20. Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=int0^(pi/2)ln(sin2x)dx ,t h e ...

    Text Solution

    |