Home
Class 12
MATHS
The value of int1^2(x^([x^2])+[x^2]^x)dx...

The value of `int_1^2(x^([x^2])+[x^2]^x)dx`, where [.] denotes the greatest integer function, is equal to

A

`(5)/(4)+sqrt(3)+(2^(sqrt(3))-2^(sqrt(2)))+(1)/(log 3)(9-3^(sqrt(3)))`

B

`(5)/(4)+sqrt(2)+(sqrt(2))/(3)+(1)/(log 2)(2^(sqrt(3))-2^(sqrt(2)))+(1)/(log 3)(9-3^(sqrt(3)))`

C

`(5)/(4)+(sqrt(2))/(3)+(1)/(log 2)(2^(sqrt(3))-2^(sqrt(2)))+(1)/(log 3)(9-3^(sqrt(3)))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_1^2 \left( x^{[x^2]} + [x^2]^x \right) dx \), where \([.]\) denotes the greatest integer function, we will first analyze the behavior of the greatest integer function within the limits of integration. ### Step 1: Determine the intervals for the greatest integer function The function \([x^2]\) will take different integer values in the interval from 1 to 2: - For \( x \in [1, \sqrt{2}) \), \( x^2 \) ranges from 1 to 2, so \([x^2] = 1\). - For \( x \in [\sqrt{2}, 2) \), \( x^2 \) ranges from 2 to 4, so \([x^2] = 2\). ### Step 2: Split the integral into two parts We can split the integral at \( x = \sqrt{2} \): \[ I = \int_1^{\sqrt{2}} \left( x^{[x^2]} + [x^2]^x \right) dx + \int_{\sqrt{2}}^2 \left( x^{[x^2]} + [x^2]^x \right) dx \] ### Step 3: Evaluate the first integral For \( x \in [1, \sqrt{2}) \): - \([x^2] = 1\) - Thus, \( I_1 = \int_1^{\sqrt{2}} \left( x^1 + 1^x \right) dx = \int_1^{\sqrt{2}} \left( x + 1 \right) dx \) Calculating \( I_1 \): \[ I_1 = \int_1^{\sqrt{2}} x \, dx + \int_1^{\sqrt{2}} 1 \, dx \] \[ = \left[ \frac{x^2}{2} \right]_1^{\sqrt{2}} + \left[ x \right]_1^{\sqrt{2}} \] \[ = \left( \frac{(\sqrt{2})^2}{2} - \frac{1^2}{2} \right) + \left( \sqrt{2} - 1 \right) \] \[ = \left( \frac{2}{2} - \frac{1}{2} \right) + \left( \sqrt{2} - 1 \right) \] \[ = \frac{1}{2} + \sqrt{2} - 1 = \sqrt{2} - \frac{1}{2} \] ### Step 4: Evaluate the second integral For \( x \in [\sqrt{2}, 2) \): - \([x^2] = 2\) - Thus, \( I_2 = \int_{\sqrt{2}}^2 \left( x^2 + 2^x \right) dx \) Calculating \( I_2 \): \[ I_2 = \int_{\sqrt{2}}^2 x^2 \, dx + \int_{\sqrt{2}}^2 2^x \, dx \] \[ = \left[ \frac{x^3}{3} \right]_{\sqrt{2}}^2 + \left[ \frac{2^x}{\ln 2} \right]_{\sqrt{2}}^2 \] \[ = \left( \frac{2^3}{3} - \frac{(\sqrt{2})^3}{3} \right) + \left( \frac{2^2}{\ln 2} - \frac{2^{\sqrt{2}}}{\ln 2} \right) \] \[ = \left( \frac{8}{3} - \frac{2\sqrt{2}}{3} \right) + \left( \frac{4}{\ln 2} - \frac{2^{\sqrt{2}}}{\ln 2} \right) \] ### Step 5: Combine both integrals Now, we combine \( I_1 \) and \( I_2 \): \[ I = I_1 + I_2 = \left( \sqrt{2} - \frac{1}{2} \right) + \left( \frac{8}{3} - \frac{2\sqrt{2}}{3} + \frac{4}{\ln 2} - \frac{2^{\sqrt{2}}}{\ln 2} \right) \] ### Final Result Thus, the final value of the integral \( I \) can be expressed as: \[ I = \sqrt{2} - \frac{1}{2} + \frac{8}{3} - \frac{2\sqrt{2}}{3} + \frac{4}{\ln 2} - \frac{2^{\sqrt{2}}}{\ln 2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of l = int_0^3([x]+[x+1/3]+[x+2/3])dx where [.] denotes the greatest integer function is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest integer function of x) is qeual to

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Let f: (0, infty) rarr R and F (x) = int(0) ^(x) f(t) dt . If F(x^(2)...

    Text Solution

    |

  2. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  3. The value of int1^2(x^([x^2])+[x^2]^x)dx, where [.] denotes the greate...

    Text Solution

    |

  4. if f(x) = |(cosx,e^(x^(2)),2x cos ^(2) x//2),(x^(2) ,sec x,sin x + x^(...

    Text Solution

    |

  5. Evaluate: int0^2(dx)/((17+8x-4x^2)[e^(6(1-x))+1)

    Text Solution

    |

  6. The value of x satisfying int(0)^(2[x+14]){(x)/(2)} dx=int(0)^({x})[x...

    Text Solution

    |

  7. If f(x) is a continous function such that f(x)|0,AA x in[2,10] and int...

    Text Solution

    |

  8. Let f be a one-one function such that f(x).f(y) + 2 = f(x) + f(y) + f(...

    Text Solution

    |

  9. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  10. If n is a positive integer then int(0)^(1)(ln x)^(n)dx is :

    Text Solution

    |

  11. int(1)^(2)((x^(2)-1)dx)/(x^(3).sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where u...

    Text Solution

    |

  12. The value of int(a)^(b)(x^(n-1)((n-2)x^(2)+(n-1)(a+b)x+nab))/((x+a)^(2...

    Text Solution

    |

  13. The number of values of x satisfying the equation : int (-4) ^(x) (8...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(...

    Text Solution

    |

  16. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  17. Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=int0^(pi/2)ln(sin2x)dx ,t h e ...

    Text Solution

    |

  18. Find Lim {x->oo}{ (1+1/(n^2))^(2/n^2)(1+4/(n^2))^(4/n^2).....(1+(n^2)/...

    Text Solution

    |

  19. The freezing point of an aqueous solution of KCN containing 0.1892" m...

    Text Solution

    |

  20. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |