Home
Class 12
MATHS
If n is a positive integer then int(0)^...

If n is a positive integer then `int_(0)^(1)(ln x)^(n)dx` is :

A

`n!`

B

`(-1)^(n)n!`

C

`(-1)^(n+2)(n+1)!`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 (\ln x)^n \, dx \) where \( n \) is a positive integer, we will use integration by parts. ### Step-by-step Solution: 1. **Set Up the Integral:** \[ I = \int_0^1 (\ln x)^n \, dx \] 2. **Choose \( u \) and \( dv \):** We will let: \[ u = (\ln x)^n \quad \text{and} \quad dv = dx \] Then, we differentiate \( u \) and integrate \( dv \): \[ du = n (\ln x)^{n-1} \cdot \frac{1}{x} \, dx \quad \text{and} \quad v = x \] 3. **Apply Integration by Parts:** Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] We have: \[ I = \left[ x (\ln x)^n \right]_0^1 - \int_0^1 x \cdot n (\ln x)^{n-1} \cdot \frac{1}{x} \, dx \] Simplifying the integral: \[ I = \left[ x (\ln x)^n \right]_0^1 - n \int_0^1 (\ln x)^{n-1} \, dx \] 4. **Evaluate the Boundary Terms:** Evaluating \( \left[ x (\ln x)^n \right]_0^1 \): - At \( x = 1 \): \( 1 \cdot \ln(1)^n = 0 \) - At \( x = 0 \): As \( x \to 0 \), \( \ln x \to -\infty \), but \( x (\ln x)^n \to 0 \) (since \( x \) approaches 0 faster than \( (\ln x)^n \) approaches \( -\infty \)). Thus: \[ \left[ x (\ln x)^n \right]_0^1 = 0 - 0 = 0 \] 5. **Substituting Back:** Now substituting back into the equation: \[ I = 0 - n \int_0^1 (\ln x)^{n-1} \, dx \] Therefore: \[ I = -n I_{n-1} \] where \( I_{n-1} = \int_0^1 (\ln x)^{n-1} \, dx \). 6. **Recursion Relation:** This gives us a recursive relation: \[ I_n = -n I_{n-1} \] 7. **Base Case:** We need to find the base case \( I_0 \): \[ I_0 = \int_0^1 1 \, dx = 1 \] 8. **Calculate \( I_n \):** Using the recursive relation: \[ I_1 = -1 \cdot I_0 = -1 \] \[ I_2 = -2 \cdot I_1 = -2 \cdot (-1) = 2 \] \[ I_3 = -3 \cdot I_2 = -3 \cdot 2 = -6 \] Continuing this pattern, we find: \[ I_n = (-1)^n n! \] ### Final Result: Thus, the value of the integral is: \[ I = \int_0^1 (\ln x)^n \, dx = (-1)^n n! \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If n is a positive odd integer, then int |x^n| dx=

Evaluate : int_(0)^(1)x(1-x)^(n)dx

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

If n is a positive integer, prove that: int_0^(2pi) (cos(n-1)x-cosnx)/(1-cosx)dx=2pi , hence or otherwise, show that int_0^(2pi) (sin((nx)/2)/sin(x/2))^2dx=2npi .

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

If and n are positive integers, then lim_(x->0)((cosx)^(1/ m)-(cosx)^(1/ n))/(x^2) equal to :

int_(0)^(1)x log (1+2 x)dx

If m and n are positive integers and f(x) = int_1^x(t-a )^(2n) (t-b)^(2m+1) dt , a!=b , then

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Let f be a one-one function such that f(x).f(y) + 2 = f(x) + f(y) + f(...

    Text Solution

    |

  2. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  3. If n is a positive integer then int(0)^(1)(ln x)^(n)dx is :

    Text Solution

    |

  4. int(1)^(2)((x^(2)-1)dx)/(x^(3).sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where u...

    Text Solution

    |

  5. The value of int(a)^(b)(x^(n-1)((n-2)x^(2)+(n-1)(a+b)x+nab))/((x+a)^(2...

    Text Solution

    |

  6. The number of values of x satisfying the equation : int (-4) ^(x) (8...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(...

    Text Solution

    |

  9. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  10. Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=int0^(pi/2)ln(sin2x)dx ,t h e ...

    Text Solution

    |

  11. Find Lim {x->oo}{ (1+1/(n^2))^(2/n^2)(1+4/(n^2))^(4/n^2).....(1+(n^2)/...

    Text Solution

    |

  12. The freezing point of an aqueous solution of KCN containing 0.1892" m...

    Text Solution

    |

  13. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  14. The area bounded by the curve y = cos^(-1) (cos x) and y = | x - pi| i...

    Text Solution

    |

  15. A point P moves in XY-plane in such a way that [|x|]+[|y|]=1, where [....

    Text Solution

    |

  16. If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6)...

    Text Solution

    |

  17. A function f(x) satisfie f(x)=f((c)/(x)) for some real number c( gt 1)...

    Text Solution

    |

  18. If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)(1-x+x^2) dx then int0^1 tan^(...

    Text Solution

    |

  19. Let f:[0,1]to R be a continuous function then the maximum value of in...

    Text Solution

    |

  20. Find the number of values of x satisfying int(0)^(x)t^(2)sin (x-t)dt=x...

    Text Solution

    |