Home
Class 12
MATHS
int(1)^(2)((x^(2)-1)dx)/(x^(3).sqrt(2x^(...

`int_(1)^(2)((x^(2)-1)dx)/(x^(3).sqrt(2x^(4)-2x^(2)+1))=(u)/(v)` where u and v are in their lowest form. Find the value of `((1000)u)/(v)`.

A

100

B

125

C

120

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{1}^{2} \frac{x^{2}-1}{x^{3} \sqrt{2x^{4}-2x^{2}+1}} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integral First, we rewrite the integral by factoring out the highest power of \(x\) from the denominator's square root. \[ \sqrt{2x^{4}-2x^{2}+1} = \sqrt{x^{4}(2 - \frac{2}{x^{2}} + \frac{1}{x^{4}})} = x^{2}\sqrt{2 - \frac{2}{x^{2}} + \frac{1}{x^{4}}}. \] Thus, the integral becomes: \[ \int_{1}^{2} \frac{x^{2}-1}{x^{3} \cdot x^{2} \sqrt{2 - \frac{2}{x^{2}} + \frac{1}{x^{4}}}} \, dx = \int_{1}^{2} \frac{x^{2}-1}{x^{5} \sqrt{2 - \frac{2}{x^{2}} + \frac{1}{x^{4}}}} \, dx. \] ### Step 2: Substitute Variables To simplify the integral further, we can use a substitution. Let: \[ t = 2 - \frac{2}{x^{2}} + \frac{1}{x^{4}}. \] Calculating \(dt\): \[ dt = \left( \frac{4}{x^{3}} - \frac{4}{x^{5}} \right) dx = \frac{4(x^{2}-1)}{x^{5}} dx. \] Thus, \[ dx = \frac{x^{5}}{4(x^{2}-1)} dt. \] ### Step 3: Change the Limits When \(x = 1\): \[ t = 2 - 2 + 1 = 1. \] When \(x = 2\): \[ t = 2 - \frac{2}{4} + \frac{1}{16} = 2 - 0.5 + 0.0625 = 1.5625 = \frac{25}{16}. \] ### Step 4: Rewrite the Integral Now substituting everything into the integral, we have: \[ \int_{1}^{\frac{25}{16}} \frac{1}{\sqrt{t}} \cdot \frac{1}{4} dt = \frac{1}{4} \int_{1}^{\frac{25}{16}} t^{-1/2} dt. \] ### Step 5: Evaluate the Integral The integral of \(t^{-1/2}\) is: \[ \int t^{-1/2} dt = 2t^{1/2}. \] Thus, we evaluate: \[ \frac{1}{4} \left[ 2t^{1/2} \right]_{1}^{\frac{25}{16}} = \frac{1}{4} \left[ 2 \left( \frac{5}{4} - 1 \right) \right] = \frac{1}{4} \left[ 2 \left( \frac{5}{4} - \frac{4}{4} \right) \right] = \frac{1}{4} \left[ 2 \cdot \frac{1}{4} \right] = \frac{1}{8}. \] ### Step 6: Express in Terms of u and v The integral evaluates to: \[ \frac{1}{8} = \frac{u}{v}. \] Here, \(u = 1\) and \(v = 8\) in their lowest form. ### Step 7: Find the Value of \(\frac{1000u}{v}\) Now we compute: \[ \frac{1000u}{v} = \frac{1000 \cdot 1}{8} = 125. \] Thus, the final answer is: \[ \boxed{125}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx

Evaluate: int(1+x^2)/((1-x^2)sqrt(1+x^2+x^4))dx

int_(-1/sqrt3)^(-1/sqrt3)(x^4)/(1-x^4)cos^(- 1)((2x)/(1+x^2))dx

If u=sin^(-1)((2x)/(1+x^2)) and v=tan^(-1)((2x)/(1-x^2)) , where -1

If y=(u)/(v) , where u and v are functions of x, show that v^(3)(d^(2)y)/(dx^(2))=|{:(u,v,0),(u',v,v),(u'',v'',2v'):}| .

If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f (x))/(sqrt2-f (x))|+C where f (x) = sin x + cos x find the value of (12A+9sqrt2V)-3.

Evaluate: int_(sqrt(2)-1)^(sqrt(2)+1)((x^2-1))/((x^2+1)^2)dx

If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2 , then find the value of f^(prime)(1) .

If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2 , then find the value of f^(prime)(1) .

If F(x)=int_(1)^(x) f(t) dt ,where f(t)=int_(1)^(t^(2))(sqrt(1+u^(4)))/(u) du , then the value of F''(2) equals to

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  2. If n is a positive integer then int(0)^(1)(ln x)^(n)dx is :

    Text Solution

    |

  3. int(1)^(2)((x^(2)-1)dx)/(x^(3).sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where u...

    Text Solution

    |

  4. The value of int(a)^(b)(x^(n-1)((n-2)x^(2)+(n-1)(a+b)x+nab))/((x+a)^(2...

    Text Solution

    |

  5. The number of values of x satisfying the equation : int (-4) ^(x) (8...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(...

    Text Solution

    |

  8. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  9. Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=int0^(pi/2)ln(sin2x)dx ,t h e ...

    Text Solution

    |

  10. Find Lim {x->oo}{ (1+1/(n^2))^(2/n^2)(1+4/(n^2))^(4/n^2).....(1+(n^2)/...

    Text Solution

    |

  11. The freezing point of an aqueous solution of KCN containing 0.1892" m...

    Text Solution

    |

  12. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  13. The area bounded by the curve y = cos^(-1) (cos x) and y = | x - pi| i...

    Text Solution

    |

  14. A point P moves in XY-plane in such a way that [|x|]+[|y|]=1, where [....

    Text Solution

    |

  15. If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6)...

    Text Solution

    |

  16. A function f(x) satisfie f(x)=f((c)/(x)) for some real number c( gt 1)...

    Text Solution

    |

  17. If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)(1-x+x^2) dx then int0^1 tan^(...

    Text Solution

    |

  18. Let f:[0,1]to R be a continuous function then the maximum value of in...

    Text Solution

    |

  19. Find the number of values of x satisfying int(0)^(x)t^(2)sin (x-t)dt=x...

    Text Solution

    |

  20. If the value of definite integral int(0)^(2)(ax +b)/((x^(2)+5x+6)^(2)...

    Text Solution

    |