Home
Class 12
MATHS
If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqr...

If `x=int_(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(z)sec^(2)sqrt(z))}dz` and `y=int_(0)^(t^(2))e^(sqrt(z)){(1-tan^(2)sqrt(z)-2tan sqrt(z))/(2sqrt(z)sec^(2)sqrt(z))}dz` : Then the inclination of the tangent to the curve at `t=(pi)/(4)` is :

A

`(pi)/(4)`

B

`(pi)/(3)`

C

`(pi)/(2)`

D

`(3pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the inclination of the tangent to the curve defined by the integrals \( x \) and \( y \) at \( t = \frac{\pi}{4} \). ### Step 1: Define the integrals We have: \[ x = \int_{0}^{t^2} e^{\sqrt{z}} \frac{2 \tan(\sqrt{z}) + 1 - \tan^2(\sqrt{z})}{2 \sqrt{z} \sec^2(\sqrt{z})} \, dz \] \[ y = \int_{0}^{t^2} e^{\sqrt{z}} \frac{1 - \tan^2(\sqrt{z}) - 2 \tan(\sqrt{z})}{2 \sqrt{z} \sec^2(\sqrt{z})} \, dz \] ### Step 2: Differentiate \( x \) and \( y \) with respect to \( t \) Using the Fundamental Theorem of Calculus and the chain rule, we differentiate \( x \) and \( y \): \[ \frac{dx}{dt} = \frac{d}{dt} \left( \int_{0}^{t^2} e^{\sqrt{z}} \frac{2 \tan(\sqrt{z}) + 1 - \tan^2(\sqrt{z})}{2 \sqrt{z} \sec^2(\sqrt{z})} \, dz \right) = 2t e^{t} \frac{2 \tan(t) + 1 - \tan^2(t)}{2t \sec^2(t)} \] \[ \frac{dy}{dt} = \frac{d}{dt} \left( \int_{0}^{t^2} e^{\sqrt{z}} \frac{1 - \tan^2(\sqrt{z}) - 2 \tan(\sqrt{z})}{2 \sqrt{z} \sec^2(\sqrt{z})} \, dz \right) = 2t e^{t} \frac{1 - \tan^2(t) - 2 \tan(t)}{2t \sec^2(t)} \] ### Step 3: Simplify \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \) Both derivatives can be simplified: \[ \frac{dx}{dt} = e^{t} \frac{2 \tan(t) + 1 - \tan^2(t)}{\sec^2(t)} \] \[ \frac{dy}{dt} = e^{t} \frac{1 - \tan^2(t) - 2 \tan(t)}{\sec^2(t)} \] ### Step 4: Find \( \frac{dy}{dx} \) Using the chain rule: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1 - \tan^2(t) - 2 \tan(t)}{2 \tan(t) + 1 - \tan^2(t)} \] ### Step 5: Evaluate \( \frac{dy}{dx} \) at \( t = \frac{\pi}{4} \) At \( t = \frac{\pi}{4} \): \[ \tan\left(\frac{\pi}{4}\right) = 1 \] Substituting \( t = \frac{\pi}{4} \): \[ \frac{dy}{dx} = \frac{1 - 1 - 2(1)}{2(1) + 1 - 1} = \frac{-2}{2} = -1 \] ### Step 6: Find the inclination of the tangent The inclination of the tangent is given by the angle whose tangent is \( \frac{dy}{dx} \): \[ \theta = \tan^{-1}(-1) \] This corresponds to an angle of \( \frac{3\pi}{4} \) (since the tangent is negative in the second quadrant). ### Final Answer Thus, the inclination of the tangent to the curve at \( t = \frac{\pi}{4} \) is: \[ \frac{3\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int(dz)/(z sqrt(z^(2)-1))

int sec^(2) " z dz "

Solve l=int_(cos^(4)t)^(-sin^(4)t)(sqrt(f(z))dz)/(sqrt(f(cos 2 t -z))+sqrt(f(z)))

If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2 , then the locus of z is

If z=pi/4(1+i)^4((1-sqrt(pi)i)/(sqrt(pi)+i)+(sqrt(pi)-i)/(1+sqrt(pi)i)),then"((|z|)/(a m p(z))) equal

If x=int_(c^(2))^(tan t)tan^(-1)z dz, y= int_(n)^(sqrt(t))(cos(z^(2)))/(z)dx then (dy)/(dx) is equal to : (where c and n are constants) :

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If the number x,y,z are in H.P. , then sqrt(yz)/(sqrt(y)+sqrt(z)),sqrt(xz)/(sqrt(x)+sqrt(z)),sqrt(xy)/(sqrt(x)+sqrt(y)) are in

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. The number of values of x satisfying the equation : int (-4) ^(x) (8...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(...

    Text Solution

    |

  4. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  5. Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=int0^(pi/2)ln(sin2x)dx ,t h e ...

    Text Solution

    |

  6. Find Lim {x->oo}{ (1+1/(n^2))^(2/n^2)(1+4/(n^2))^(4/n^2).....(1+(n^2)/...

    Text Solution

    |

  7. The freezing point of an aqueous solution of KCN containing 0.1892" m...

    Text Solution

    |

  8. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  9. The area bounded by the curve y = cos^(-1) (cos x) and y = | x - pi| i...

    Text Solution

    |

  10. A point P moves in XY-plane in such a way that [|x|]+[|y|]=1, where [....

    Text Solution

    |

  11. If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6)...

    Text Solution

    |

  12. A function f(x) satisfie f(x)=f((c)/(x)) for some real number c( gt 1)...

    Text Solution

    |

  13. If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)(1-x+x^2) dx then int0^1 tan^(...

    Text Solution

    |

  14. Let f:[0,1]to R be a continuous function then the maximum value of in...

    Text Solution

    |

  15. Find the number of values of x satisfying int(0)^(x)t^(2)sin (x-t)dt=x...

    Text Solution

    |

  16. If the value of definite integral int(0)^(2)(ax +b)/((x^(2)+5x+6)^(2)...

    Text Solution

    |

  17. Let f(x) be a real valued function such that f(x)=f(121/x), AA x>0.If ...

    Text Solution

    |

  18. If the area enclosed by the curve y^(2)=4x and 16y^(2)=5(x-1)^(3) can...

    Text Solution

    |

  19. Let f(x)=x-x^(2) and g(x)=ax. If the area bounded by f(x) and g(x) is...

    Text Solution

    |

  20. Let An be the area bounded by the curve y = x^n(n>=1) and the line x=...

    Text Solution

    |