Home
Class 12
MATHS
Find Lim {x->oo}{ (1+1/(n^2))^(2/n^2)(1+...

Find `Lim {x->oo}{ (1+1/(n^2))^(2/n^2)(1+4/(n^2))^(4/n^2).....(1+(n^2)/(n^2))^(2n/n^2)}`

A

`(1)/(e )`

B

`(4)/(e )`

C

`(2)/(e )`

D

`(3)/(e )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the limit: \[ L = \lim_{n \to \infty} \left( (1 + \frac{1}{n^2})^{\frac{2}{n^2}} \cdot (1 + \frac{4}{n^2})^{\frac{4}{n^2}} \cdots (1 + \frac{n^2}{n^2})^{\frac{2n}{n^2}} \right) \] ### Step 1: Rewrite the expression We can rewrite the expression in a more manageable form: \[ L = \lim_{n \to \infty} \prod_{r=1}^{n} \left(1 + \frac{r^2}{n^2}\right)^{\frac{2r}{n^2}} \] ### Step 2: Take the logarithm Taking the natural logarithm of both sides, we have: \[ \log L = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{2r}{n^2} \log\left(1 + \frac{r^2}{n^2}\right) \] ### Step 3: Change to summation form We can express the sum as: \[ \log L = \lim_{n \to \infty} \frac{2}{n^2} \sum_{r=1}^{n} r \log\left(1 + \frac{r^2}{n^2}\right) \] ### Step 4: Convert to integral form As \( n \to \infty \), the sum can be approximated by an integral. We set \( x = \frac{r}{n} \), thus \( r = nx \) and \( dr = n \, dx \): \[ \log L = \lim_{n \to \infty} \int_{0}^{1} 2n^2 x \log\left(1 + \frac{(nx)^2}{n^2}\right) \frac{1}{n} \, dx \] This simplifies to: \[ \log L = \lim_{n \to \infty} \int_{0}^{1} 2n x \log(1 + x^2) \, dx \] ### Step 5: Evaluate the integral The integral can be evaluated as: \[ \log L = 2 \int_{0}^{1} x \log(1 + x^2) \, dx \] ### Step 6: Use integration by parts Let \( u = \log(1 + x^2) \) and \( dv = x \, dx \). Then, \( du = \frac{2x}{1 + x^2} \, dx \) and \( v = \frac{x^2}{2} \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] Calculating this gives us: \[ \int x \log(1 + x^2) \, dx = \frac{x^2}{2} \log(1 + x^2) - \int \frac{x^2}{2} \cdot \frac{2x}{1 + x^2} \, dx \] ### Step 7: Evaluate the limits Evaluating the limits from 0 to 1, we find: \[ \log L = 2 \left( \frac{1}{2} \log(2) - \text{(other terms)} \right) \] ### Step 8: Final expression After evaluating the integral and simplifying, we find: \[ L = \frac{4}{e} \] ### Conclusion Thus, the final answer is: \[ \boxed{\frac{4}{e}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

lim_(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

Evalute lim_(n->oo)[1/((n+1)(n+2))+1/((n+2)(n+4))+......+1/(6n^2)]

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

Evaluate lim_(n->oo)n[1/((n+1)(n+2))+1/((n+2)(n+4))+....+1/(6n^2)]

Evaluate the following limit: (lim)_(n->oo)(1/(n^2)+2/(n^2)+3/(n^2)++(n-1)/(n^2\ ))

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. about to only mathematics

    Text Solution

    |

  2. If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(...

    Text Solution

    |

  3. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  4. Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=int0^(pi/2)ln(sin2x)dx ,t h e ...

    Text Solution

    |

  5. Find Lim {x->oo}{ (1+1/(n^2))^(2/n^2)(1+4/(n^2))^(4/n^2).....(1+(n^2)/...

    Text Solution

    |

  6. The freezing point of an aqueous solution of KCN containing 0.1892" m...

    Text Solution

    |

  7. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  8. The area bounded by the curve y = cos^(-1) (cos x) and y = | x - pi| i...

    Text Solution

    |

  9. A point P moves in XY-plane in such a way that [|x|]+[|y|]=1, where [....

    Text Solution

    |

  10. If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6)...

    Text Solution

    |

  11. A function f(x) satisfie f(x)=f((c)/(x)) for some real number c( gt 1)...

    Text Solution

    |

  12. If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)(1-x+x^2) dx then int0^1 tan^(...

    Text Solution

    |

  13. Let f:[0,1]to R be a continuous function then the maximum value of in...

    Text Solution

    |

  14. Find the number of values of x satisfying int(0)^(x)t^(2)sin (x-t)dt=x...

    Text Solution

    |

  15. If the value of definite integral int(0)^(2)(ax +b)/((x^(2)+5x+6)^(2)...

    Text Solution

    |

  16. Let f(x) be a real valued function such that f(x)=f(121/x), AA x>0.If ...

    Text Solution

    |

  17. If the area enclosed by the curve y^(2)=4x and 16y^(2)=5(x-1)^(3) can...

    Text Solution

    |

  18. Let f(x)=x-x^(2) and g(x)=ax. If the area bounded by f(x) and g(x) is...

    Text Solution

    |

  19. Let An be the area bounded by the curve y = x^n(n>=1) and the line x=...

    Text Solution

    |

  20. If int(0)^(1)[4x^(3)-f(x)dx=(4)/(7)] then find the area of region boun...

    Text Solution

    |