Home
Class 12
MATHS
If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(...

If `(1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6)` and `int_(0)^(1)(ln (l+x))/(x)dx=(3pi^(2))/(k)` then k equals :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \int_0^1 \frac{\ln(1+x)}{x} \, dx \) and relate it to the given series. ### Step 1: Set up the integral We start with the integral: \[ I = \int_0^1 \frac{\ln(1+x)}{x} \, dx \] ### Step 2: Use the Taylor series expansion for \(\ln(1+x)\) The Taylor series expansion for \(\ln(1+x)\) around \(x = 0\) is: \[ \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] Dividing by \(x\), we have: \[ \frac{\ln(1+x)}{x} = 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \ldots \] ### Step 3: Substitute the series into the integral Now we substitute this series into the integral: \[ I = \int_0^1 \left( 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \ldots \right) \, dx \] ### Step 4: Integrate term by term We can integrate term by term: \[ I = \int_0^1 1 \, dx - \frac{1}{2} \int_0^1 x \, dx + \frac{1}{3} \int_0^1 x^2 \, dx - \frac{1}{4} \int_0^1 x^3 \, dx + \ldots \] Calculating each integral: - \(\int_0^1 1 \, dx = 1\) - \(\int_0^1 x \, dx = \frac{1}{2}\) - \(\int_0^1 x^2 \, dx = \frac{1}{3}\) - \(\int_0^1 x^3 \, dx = \frac{1}{4}\) Thus, we have: \[ I = 1 - \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{4} + \ldots \] ### Step 5: Recognize the series This series can be rewritten as: \[ I = 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \ldots \] This is the alternating series of \(\frac{1}{n^2}\). ### Step 6: Relate to the known series We know from the problem statement that: \[ \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \] Thus, we can express \(I\) as: \[ I = \frac{\pi^2}{6} - 2 \left( \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \ldots \right) \] ### Step 7: Calculate the sum of the series The series for the even terms can be expressed as: \[ \sum_{n=1}^{\infty} \frac{1}{(2n)^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{24} \] Thus: \[ I = \frac{\pi^2}{6} - 2 \cdot \frac{\pi^2}{24} = \frac{\pi^2}{6} - \frac{\pi^2}{12} = \frac{\pi^2}{12} \] ### Step 8: Relate to the given equation According to the problem, we have: \[ I = \frac{3\pi^2}{k} \] Setting the two expressions for \(I\) equal gives: \[ \frac{\pi^2}{12} = \frac{3\pi^2}{k} \] ### Step 9: Solve for \(k\) Cancelling \(\pi^2\) from both sides, we get: \[ \frac{1}{12} = \frac{3}{k} \] Cross-multiplying gives: \[ k = 36 \] ### Final Answer Thus, the value of \(k\) is: \[ \boxed{36} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(k) ( 1)/(9x^(2) + 1) dx = ( pi )/( 12) , then k is equal to

int_(0)^(1) sin^(-1) x dx =(pi)/(2) -1

If int (2^(1//x))/(x^(2))dx= k.2^(1//x) , then k is equal to :

Prove that : int_(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

If int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8 , then a=

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

int_(0)^(pi//2) (1)/(4+3 cos x)dx

int_(1)^(3) (dx)/(x^(2)(x+1))=(2)/(3)+log .(2)/(3)

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

int_(0)^(1//2)(1)/(1-x^(2))ln.(1-x)/(1+x)dx is equal to

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. about to only mathematics

    Text Solution

    |

  2. If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(...

    Text Solution

    |

  3. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  4. Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=int0^(pi/2)ln(sin2x)dx ,t h e ...

    Text Solution

    |

  5. Find Lim {x->oo}{ (1+1/(n^2))^(2/n^2)(1+4/(n^2))^(4/n^2).....(1+(n^2)/...

    Text Solution

    |

  6. The freezing point of an aqueous solution of KCN containing 0.1892" m...

    Text Solution

    |

  7. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  8. The area bounded by the curve y = cos^(-1) (cos x) and y = | x - pi| i...

    Text Solution

    |

  9. A point P moves in XY-plane in such a way that [|x|]+[|y|]=1, where [....

    Text Solution

    |

  10. If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6)...

    Text Solution

    |

  11. A function f(x) satisfie f(x)=f((c)/(x)) for some real number c( gt 1)...

    Text Solution

    |

  12. If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)(1-x+x^2) dx then int0^1 tan^(...

    Text Solution

    |

  13. Let f:[0,1]to R be a continuous function then the maximum value of in...

    Text Solution

    |

  14. Find the number of values of x satisfying int(0)^(x)t^(2)sin (x-t)dt=x...

    Text Solution

    |

  15. If the value of definite integral int(0)^(2)(ax +b)/((x^(2)+5x+6)^(2)...

    Text Solution

    |

  16. Let f(x) be a real valued function such that f(x)=f(121/x), AA x>0.If ...

    Text Solution

    |

  17. If the area enclosed by the curve y^(2)=4x and 16y^(2)=5(x-1)^(3) can...

    Text Solution

    |

  18. Let f(x)=x-x^(2) and g(x)=ax. If the area bounded by f(x) and g(x) is...

    Text Solution

    |

  19. Let An be the area bounded by the curve y = x^n(n>=1) and the line x=...

    Text Solution

    |

  20. If int(0)^(1)[4x^(3)-f(x)dx=(4)/(7)] then find the area of region boun...

    Text Solution

    |