Home
Class 12
MATHS
If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)...

If `2int_0^1 tan^(-1)x dx= int_0^1 cot^(-1)(1-x+x^2) dx` then `int_0^1 tan^(-1)(1-x+x^2) dx=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ 2 \int_0^1 \tan^{-1}(x) \, dx = \int_0^1 \cot^{-1}(1 - x + x^2) \, dx \] We need to find the value of: \[ \int_0^1 \tan^{-1}(1 - x + x^2) \, dx \] Let's denote: \[ I = \int_0^1 \tan^{-1}(1 - x + x^2) \, dx \] Using the identity: \[ \tan^{-1}(a) + \cot^{-1}(a) = \frac{\pi}{2} \] we can express \( I \) as: \[ I = \int_0^1 \left( \frac{\pi}{2} - \cot^{-1}(1 - x + x^2) \right) \, dx \] This gives us: \[ I = \frac{\pi}{2} \int_0^1 dx - \int_0^1 \cot^{-1}(1 - x + x^2) \, dx \] Calculating the first integral: \[ \int_0^1 dx = 1 \] Thus, we have: \[ I = \frac{\pi}{2} - \int_0^1 \cot^{-1}(1 - x + x^2) \, dx \] From the problem statement, we know: \[ \int_0^1 \cot^{-1}(1 - x + x^2) \, dx = 2 \int_0^1 \tan^{-1}(x) \, dx \] Let’s denote: \[ J = \int_0^1 \tan^{-1}(x) \, dx \] So we can rewrite \( I \): \[ I = \frac{\pi}{2} - 2J \] Next, we need to calculate \( J \). We can use integration by parts for \( J \): Let \( u = \tan^{-1}(x) \) and \( dv = dx \). Then: \[ du = \frac{1}{1 + x^2} \, dx \quad \text{and} \quad v = x \] Using integration by parts: \[ J = \left[ x \tan^{-1}(x) \right]_0^1 - \int_0^1 \frac{x}{1 + x^2} \, dx \] Calculating the boundary term: \[ \left[ x \tan^{-1}(x) \right]_0^1 = 1 \cdot \tan^{-1}(1) - 0 \cdot \tan^{-1}(0) = \frac{\pi}{4} \] Now we calculate the second integral: \[ \int_0^1 \frac{x}{1 + x^2} \, dx \] Using substitution \( t = 1 + x^2 \), \( dt = 2x \, dx \): When \( x = 0 \), \( t = 1 \) and when \( x = 1 \), \( t = 2 \): \[ \int_0^1 \frac{x}{1 + x^2} \, dx = \frac{1}{2} \int_1^2 \frac{1}{t} \, dt = \frac{1}{2} \left[ \ln(t) \right]_1^2 = \frac{1}{2} (\ln(2) - \ln(1)) = \frac{1}{2} \ln(2) \] Putting this back into \( J \): \[ J = \frac{\pi}{4} - \frac{1}{2} \ln(2) \] Now substituting \( J \) back into the equation for \( I \): \[ I = \frac{\pi}{2} - 2 \left( \frac{\pi}{4} - \frac{1}{2} \ln(2) \right) \] This simplifies to: \[ I = \frac{\pi}{2} - \frac{\pi}{2} + \ln(2) = \ln(2) \] Thus, the final result is: \[ \int_0^1 \tan^{-1}(1 - x + x^2) \, dx = \ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int_0^1cot^(- 1)(1-x+x^2)dx

2) int_(0)^(1)tan^(-1)(1-x+x^(2))dx

Evaluate: int_0^1cot^(-1)(1-x+x^2)dx

int_0^4 (2x-1) dx

Evaluate int_0^1(tan^(-1)x)/(1+x^2)dx

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

int _(0)^(1) (tan ^(-1)x)/(x ) dx =

int_0^1 sqrt((1-x)/(1+x)) dx

int_(0)^(1) (1)/(1+x+2x^(2))dx

Evaluate inte^(a tan^-1x)/(1+x^2)dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. about to only mathematics

    Text Solution

    |

  2. If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(...

    Text Solution

    |

  3. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  4. Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=int0^(pi/2)ln(sin2x)dx ,t h e ...

    Text Solution

    |

  5. Find Lim {x->oo}{ (1+1/(n^2))^(2/n^2)(1+4/(n^2))^(4/n^2).....(1+(n^2)/...

    Text Solution

    |

  6. The freezing point of an aqueous solution of KCN containing 0.1892" m...

    Text Solution

    |

  7. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  8. The area bounded by the curve y = cos^(-1) (cos x) and y = | x - pi| i...

    Text Solution

    |

  9. A point P moves in XY-plane in such a way that [|x|]+[|y|]=1, where [....

    Text Solution

    |

  10. If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6)...

    Text Solution

    |

  11. A function f(x) satisfie f(x)=f((c)/(x)) for some real number c( gt 1)...

    Text Solution

    |

  12. If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)(1-x+x^2) dx then int0^1 tan^(...

    Text Solution

    |

  13. Let f:[0,1]to R be a continuous function then the maximum value of in...

    Text Solution

    |

  14. Find the number of values of x satisfying int(0)^(x)t^(2)sin (x-t)dt=x...

    Text Solution

    |

  15. If the value of definite integral int(0)^(2)(ax +b)/((x^(2)+5x+6)^(2)...

    Text Solution

    |

  16. Let f(x) be a real valued function such that f(x)=f(121/x), AA x>0.If ...

    Text Solution

    |

  17. If the area enclosed by the curve y^(2)=4x and 16y^(2)=5(x-1)^(3) can...

    Text Solution

    |

  18. Let f(x)=x-x^(2) and g(x)=ax. If the area bounded by f(x) and g(x) is...

    Text Solution

    |

  19. Let An be the area bounded by the curve y = x^n(n>=1) and the line x=...

    Text Solution

    |

  20. If int(0)^(1)[4x^(3)-f(x)dx=(4)/(7)] then find the area of region boun...

    Text Solution

    |